八年级数学的教案[精华]
作为一名教职工,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?下面是小编收集整理的八年级数学的教案,希望对大家有所帮助。
八年级数学的教案1
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的.AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
八年级数学的教案2
一、创设情景,明确目标
多媒体展示:内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标
三角形的内角和
活动一:见教材P11“探究”.
展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.
小组讨论:有没有不同的证明方法?
反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.
针对训练:见《学生用书》相应部分
三角形内角和定理的应用
活动二:见教材P12例1
展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?
小组讨论:三角形的内角和在解题时,如何灵活应用?
反思小结:当三角形中已知两角的'读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1.本节学习的数学知识是:三角形的内角和是180°.
2.三角形内角和定理的证明思路是什么?
3.数学思想是转化、数形结合.
《三角形综合应用》精讲精练
1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )
A.5 B.6 C.7 D.10
3.下列五种说法:①三角形的三个内角中至少有两个锐角;
②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).
《11.2与三角形有关的角》同步测试
4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?
(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?
八年级数学的教案3
首先通过对问题的思考与解答,回顾总结梳理本章所学的知识,将所学的知识与以前学过的知识进行紧密联结。通过思考,知识得到内化,认知结构得到进一步完善。回忆本章内容,建立知识结构图。通过练习把知识加以巩固。
教学目标
知识与技能
1.反比例函数的图象和性质。
2.能根据所给的`条件,确定反比例函数,体会函数在实际问题中的应用价值。
3.反比例函数的应用:解决实际问题,学科内部的应用。
过程与方法
1.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种数学模型的意义。
2.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质。
3.提高观察、分析、归纳的能力,感悟数形结合的数学思想方法。
情感、态度与价值观
1.面对困难,树立克服困难的勇气和战胜困难的信心。
2.养成合作交流意识和运用数学问题解决实际问题的意识,认识数学的实用性。
教学重点和难点
重点是:反比例函数的概念、图象和主要性质。
难点是:对反比例函数意义的理解。
教学方法
启发引导、小组讨论
课时安排
1课时
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
问题l:你能举出现实生活中有关反函数的几个例子吗?
八年级数学的教案4
一、创设情境
在学习与生活中,经常要研究一些数量关系,先看下面的问题。
问题1如图是某地一天内的气温变化图。
看图回答:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃。最低气温是-4℃;
(3)这一天中,3时~14时的气温在逐渐升高。0时~3时和14时~24时的气温在逐渐降低。
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化。那么在生活中是否还有其它类似的数量关系呢?
二、探究归纳
问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:
观察上表,说说随着存期x的增长,相应的年利率y是如何变化的。
解随着存期x的增长,相应的年利率y也随着增长。
问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的。下面是一些对应的数值:
观察上表回答:
(1)波长l和频率f数值之间有什么关系?
(2)波长l越大,频率f就________。
解(1)l与f的`乘积是一个定值,即
lf=300000,或者说。
(2)波长l越大,频率f就 越小 。
问题4圆的面积随着半径的增大而增大。如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________。
利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:
由此可以看出,圆的半径越大,它的面积就_________。
解S=πr2。
圆的半径越大,它的面积就越大。
在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律。这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量。例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值。像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable)。
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关。一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值
八年级数学的教案5
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的'结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 150 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
八年级数学的教案6
5 14.3.2.2 等边三角形(二)
教学目标
掌握等边三角形的性质和判定方法.
培养分析问题、解决问题的能力.
教学重点
等边三角形的性质和判定方法.
教学难点
等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的'有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
III课堂小结
1、等腰三角形和性质
2、等腰三角形的条件
V布置作业
1.教科书第147页练习1、2
2.选做题:
(1)教科书第150页习题14.3第ll题.
(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
(3)《课堂感悟与探究》
5
八年级数学的教案7
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系。
教学重点:
等腰三角形的判定定理及推论的运用
教学难点:
正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的`长度就可知河流宽度。
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。
II引入新课
1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2、引导学生根据图形,写出已知、求证。
3、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。
4、引导学生说出引例中地质专家的测量方法的根据。
III例题与练习
1、如图2
其中△ABC是等腰三角形的是[ ]
2、①如图3,已知△ABC中,AB=AC。∠A=36°,则∠C______(根据什么?)。
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______。
④若已知AD=4cm,则BC______cm。
3、以问题形式引出推论l______。
4、以问题形式引出推论2______。
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。
练习:
5、(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E。问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:P53练习1、2、3。
IV课堂小结
1、判定一个三角形是等腰三角形有几种方法?
2、判定一个三角形是等边三角形有几种方法?
3、等腰三角形的性质定理与判定定理有何关系?
4、现在证明线段相等问题,一般应从几方面考虑?
V布置作业:P56页习题12.3第5、6题
八年级数学的教案8
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的.横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
八年级数学的教案9
教学建议
1、平行线等分线段定理
定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。
注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。
定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。
2、平行线等分线段定理的推论
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”。
推论的用途:(1)平分已知线段;(2)证明线段的倍分。
重难点分析
本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。
本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。
教法建议
平行线等分线段定理的.引入
生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:
①从生活实例引入,如刻度尺、作业本、栅栏、等等;
②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。
教学设计示例
一、教学目标
1、使学生掌握平行线等分线段定理及推论。
2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。
3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。
4、通过本节学习,体会图形语言和符号语言的和谐美
二、教法设计
学生观察发现、讨论研究,教师引导分析
三、重点、难点
1、教学重点:平行线等分线段定理
2、教学难点:平行线等分线段定理
四、课时安排
l课时
五、教具学具
计算机、投影仪、胶片、常用画图工具
六、师生互动活动设计
教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习
七、教学步骤
【复习提问】
1、什么叫平行线?平行线有什么性质。
2、什么叫平行四边形?平行四边形有什么性质?
【引入新课】
由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?
(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)
平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。
下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。
已知:如图,直线 , 。
求证: 。
分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。
(引导学生找出另一种证法)
分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。
证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。
∴
∵ ,
∴
又∵ , ,
∴
∴
为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。
引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。
推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。
注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。
接下来讲如何利用平行线等分线段定理来任意等分一条线段。
例 已知:如图,线段 。
求作:线段 的五等分点。
作法:①作射线 。
②在射线 上以任意长顺次截取 。
③连结 。
④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。
、 、 、 就是所求的五等分点。
(说明略,由学生口述即可)
【总结、扩展】
小结:
(l)平行线等分线段定理及推论。
(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。
(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。
(4)应用定理任意等分一条线段。
八、布置作业
教材P188中A组2、9
九、板书设计
十、随堂练习
教材P182中1、2
八年级数学的教案10
创设情境
1.什么叫平行四边形?平行四边形有什么性质?
2.将以上的性质定理,分别用命题形式叙述出来。
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
探究归纳
平行四边形的判定方法:
证明:两组对边分别相等的四边形是平行四边形
已知:
求证:
做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的`木条成为对边。它是平行四边形吗?
学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。
观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形
练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形
八年级数学的教案11
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的.几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.
八年级数学的教案12
教学目标:
(一)教学知识点:梯形的判别方法.
(二)能力训练要求
1.经历探索梯形的判别条件的过程,在简单的操作活动中发展学生的说理意识.
2.探索并掌握“同一底上的两个内角相等的梯形是等腰梯形”这一判别条件.
(三)情感与价值观要求
1.通过探索梯形的判别条件,发展学生的说理意识,主动探究的习惯
2.解决梯形问题中,渗透转化思想
教学重点:梯形的判别条件
教学难点:解决梯形问题的基本方法
教学过程:
一、引入课题
上节课我们研究了特殊的梯形——等腰梯形的概念及其性质,下面我们来共同回忆一下:什么样的梯形是等腰梯形?等腰梯形有什么性质?
1.两腰相等的.梯形是等腰梯形
2.等腰梯形同一底上的两个内角相等,对角线相等
怎样判定等腰梯形呢?我们这节课就来探讨等腰梯形的判定
二、讲授新课
判定:同一底上的两个内角相等的梯形是等腰梯形
问:我们能说明这种判定方法的正确性吗?
如图,在梯形ABCD中,AD∥BC,∠B=∠C
求证:梯形ABCD是等腰梯形
法一:证明:把腰DC平移到AE的位置,这时,四边形AECD是平行四边形,则AE∥CD
AE=CD,因为AE∥CE,所以∠AEB=∠C
又因为∠B=∠C,所以∠AEB=∠B
由在一个三角形中,等角对等边,得
AB=AE,所以AB=CD
因此梯形ABCD是等腰梯形
八年级数学的教案13
Ⅰ.教学任务分析
教学目标
知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.
过程与能力 培养学生数学建模的能力.
情感与态度 实例引入,激发学生学习数学的兴趣.
教学重点 探索正比例函数的性质.
教学难点 从实际问题情境中建立正比例函数的数学模型.
Ⅱ.教学过程设计
问题及师生行为 设计意图
一、创设问题,激发兴趣
【问题1】将下列问题中的变量用函数表示出来:
(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;
(2)三角形的底为10cm,其面积y随高x的'变化而变化;
(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化.
解:(1)y=4x;(2)y=5x;(3)y=3x.
教师提出问题,学生独立思考并回答问题.
教师点评,并且提醒学生注意用x表示y. 问题引入,为新知作好铺垫.
二、诱导参与,探究新知
思考:观察函数关系式:
① y=4x; ② y=5x; ③ y=3x.
这些函数有什么特点?
都是y等于一个常量与x的乘积.
教师提出问题,并引导学生观察:
学生观察思考并回答问题.
三、引导归纳,提炼新知
(板书)正比例函数的概念:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.
注意:x 的取值范围是全体实数.
由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.
通过板书,突出本节课的重点.
四、指导应用,发展能力
1.下列函数是否是正比例函数?比例系数是多少?
(1) 是,比例系数k=8. (2) 不是.
(3) 是,比例系数k= . (4) 不是.
填空
1.若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.
题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范.
在本次活动中,教师要关注:
学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.
五、探究新知
例1 画出正比例函数y=x的图象.
解:(1)列表:
x --- -2 -1 0 1 2 ---
y --- -2 -1 0 1 2 ---
画出函数y=x的图象.
(1)列表: (2)描点: (3)连线:
想一想
除了用描点法外,还有其他简单的方法画正比例函数图象吗?
根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.
同理,画出y=-x的图象.
师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限.
函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限.
归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线.
当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;
当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.
由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.
六、指导应用,发展能力
例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点.
相同点:图象经过一、三象限,从左向右上升;
不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近.
例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点.
相同点:图象经过二、四象限,从左向右下降;
不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近.
在y=kx中,k的绝对值越大,函数图象越靠近y轴.
八年级数学的教案14
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的'概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
八年级数学的教案15
教学目标
(一)教学知识点
1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。
2.理解积的乘方运算法则,能解决一些实际问题。
(二)能力训练要求
1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。
2.学习积的乘方的运算法则,提高解决问题的能力。
(三)情感与价值观要求
在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。
教学重点
积的乘方运算法则及其应用。
教学难点
幂的运算法则的灵活运用。
教学方法
自学─引导相结合的方法。
同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。
教具准备
投影片.
教学过程
Ⅰ.提出问题,创设情境
[师]还是就上节课开课提出的`问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?
[生]它的体积应是V=(1.1×103)3cm3。
[师]这个结果是幂的乘方形式吗?
[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。
[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。
Ⅱ.导入新课
老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。
出示投影片
1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
(2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整数)
2.把你发现的规律用文字语言表述,再用符号语言表达。
3.解决前面提到的正方体体积计算问题。
4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。
5.完成课本P170例3。
学生探究的经过:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则。同样的方法可以算出(2)、(3)题。
【八年级数学的教案】相关文章:
数学八年级上册教案03-02
八年级数学的教案12-30
八年级数学的教案07-24
有关八年级数学教案八年级数学教案全套10-03
八年级数学教案03-05
八年级数学复习教案01-06
八年级数学下册教案05-16
八年级数学下册教案01-10
八年级数学教案12-04