七年级数学上册教案[经典15篇]
作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。写教案需要注意哪些格式呢?下面是小编为大家收集的七年级数学上册教案,仅供参考,大家一起来看看吧。
七年级数学上册教案1
【学习目标】
1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化.
2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点.
【导学提纲】
梳理本知识:
1. 基本概念
2.位置关系 .
3.相关图形的性质.
(1)线段和直线的有关性质:
(2)余角、补角、对顶角的有关性质:
(3)平行和垂直的有关性质:
4.基本作图.(尺规作图)
(1)作一条线段AB等于线段a;
(2)作 等于 .
5.分类思想.
【反馈矫正】
1.完成本p172页复习题第1、2、3、4、5、7、8题
2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.
3.如果 与 互补, 与 互余,则 与 的关系是( )
A. = B.
C. D. 与 互余
4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分.
5.如图,OE是∠AOD的平分线,OF⊥OD,垂足为O,
∠EOF=19°,求∠AOD的度数.
【迁移拓展】
完成本p172页复习题第9、11、14题
【堂作业】本p172页复习题第6、10题
整式
题2.1 整式时本学期
第 时日期
型新授主备人复备人审核人
学习
目标(1)了解单 项式 及单项式系数、次数的概念;
(2)会准确迅速地确定一个单项式的系数和次数。
重点
难点重点:单项式及单 项式的系数、次数的概念;
准确迅速地确定一个单项式的.系数和次数。
难点:单项式概念的建立
流程师生活动时 间复备标注
一、导入新
回顾:先填空,再请说出你所列式子的运算含义。
1、边长为x的正方形的周长是 。
2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。
3、 如图正方体的表面积为 ,体积为 。
4、设n表示 一个数,则它的相反数是
看前图,尝试回答3 个问题
在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础
二、新授
1、自学第54--55页,回答下列问题
完成思考的4个问题
什么是单项式,单项式的系数,次数?举例说明
归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。
注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。
完成56页练习1
2、自学第55页例题,回答 下列问题
独立完成例题,后订正答案
同一个式子表示的意义是否相同?
归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。
3、完成56页练习2
三、堂达标练习
59页习题1
四、堂小结
1、单项式、单项式系数、单项式次数的概念
2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?
七年级数学上册教案2
一、教学目标:
(一)教学知识点
1。与身边熟悉的事物做比较感受百万分之一等较小的数据并用科学记数法表示较小的数据。
2。近似数和有效数字并按要求取近似数。
3。从统计图中获取信息并用统计图形象地表示数据。
(二)能力训练要求
1。体会描述较小数据的方法进一步发展数感。
2。了解近似数和有效数字的概念能按要求取近似数体会近似数的意义在生活中的作用。
3。能读懂统计图中的信息并能收集、整理、描述和分析数据有效、形象地用统计图描述数据发展统计观念。
(三)情感与价值观要求:1。培养学生用数学的意识和信心体会数学的应用价值。2。发展学生的创新能力和克服困难的勇气。
二、教学重点:1。感受较小的数据。
2。用科学记数法表示较小的数。
3。近似数和有效数字并能按要求取近似数。
4。读懂统计图并能形象、有效地用统计图描述数据。
教学难点:形象、有效地用统计图描述数据。
教学过程:。创设情景引入新课
三。讲授新课:请你用熟悉的事物描述一些较小的数据:大象是世界上最大的陆栖动物它的体重可达几吨。世界第一高峰——珠穆朗玛峰它的海拔高度约为8848米。
1。哪些数据用科学记数法表示比较方便?举例说明。
2。用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成其中氢原子的直径约为0。0000000001米。
(2)生物学家发现一种病毒的长度约为0。000043毫米;
(3)某种鲸的体重可达136000000千克;
(4)20xx年5月19日国家邮政局特别发行“万众一心抗击‘非典’”邮票收入全部捐给卫生部门用以支持抗击“非典”斗争其邮票的发行量为12500000枚。
四。课时小结:我们这节课回顾了以下知识:
1。又一次经历感受了百万分之一进一步体会描述较小数据的.方法:与身边事物比较进一步学习了利用科学记数法表示较小的数据。
2。在实际情景中进一步体会到了近似数的意义和作用并按要求取近似数和有效数字。
3。又一次欣赏了形象的统计图并从中获取有用的信息。
(1)根据上表中的数据制作统计图表示这些主要河流的河长情况你的统计图要尽可能的形象。
(2)从上表中的数据可以看出河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流你认为河流年径流量与河流所处的地理位置有关系吗?
制作形象的统计图首先要处理好数据即从表格中计算出这几条河流长度的比例然后选择最大或最小作为基准量按比例形象画出即可。
(1)形象统计图(略)只要合理即可。
(2)从表中的数据看出河流越长其流域面积越大。
(3)河流的年径流量与河流所处的位置有关系。
五。课后作业:
七年级数学上册教案3
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?
向上看 向前走200米 电梯上升15层 我在银行存入了500元
二、复习旧知
我们已经学习了负数,你能举几个负数的例子吗?
通过前面内容的学习,你还知道哪些知识?
三、学习新知
1.教学例3。
出示例3的情境:小明向东走200米,小军向西走200米。
教师问:你准备怎样来表示这两个不同意思的`量?
学生1:向东走200米记作+200米,向西走200米就记作-200米。
学生2:向西走200米记作+200米,向东走200米就记作-200米。
教师对这两种记法都应给予肯定。
学生独立试一试
(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?
(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?
学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。
(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。
项目 父母工资 电话费 父母奖金 水、电、气费 伙食费
收支情况(元) 4500 -130 1000 -280 -1750
2.教学例4。
教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)
月份 7月 8月 9月 10月 11月 12月
盈亏情况(元) +6500 -2700 0 -750 +9500 +16700
教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)
教师:从表中你获得了哪些信息?
学生小组内交流,然后全班汇报。
教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。
3.讨论生活中的负数。
教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。
教师:存折上的-800表示什么意思?
学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元
电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
四、课堂练习
1.下图每段表示1m,小丽刚开始的位置在0处。
(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )
(2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。
(3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。
(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。
(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。
2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。
3.如果-20分表示比平均分低20分,那么+15表示( )
4.如果比规定任务多做5个记作+5个,那么-5表示( )
5.2.如果在银行存入10000元记作+10000,那么-5000表示( )。
五、自学“你知道吗?”
学生阅读教科书92页内容,说说有什么收获?
六、课堂小结
通过今天的学习,你有什么收获?
七、课堂作业
练习二十二第6、7题。
家庭作业:90页课堂活动第3题,练习二十二第5、8题
板书设计:
认识具有相反意义的量及其简单应用
向东走200米记作+200米,向西走200米就记作-200米
正数、负数来表示相反意义的量。
七年级数学上册教案4
总时:1时
第1时, 备时间:开学第十五周 上时间:第十六周
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.
2 .近似数和有效数字 并按要求取近似数.
3.从统计图中获取信息 并用统计图形象地表示数据.
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感.
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.
(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的勇气.
二、教学重点:1.感受较小的数据.
2.用科学记数法表示较小的数.
3.近似数和有效数字 并能按要求取近似数.
4.读懂统计图 并能形象、有效地用统计图描述数据.
教学难点:形象、有效地用统计图描述数据.
教学过程:.创设情景 引入新
三.讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明.
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的'发行量为12 500 000枚.
四.时小结:我们这节回顾了以下知识:
1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据.
2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.
3.又一次欣赏了形象的统计图 并从中获取有用的信息.
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.
(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?
制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.
(1)形象统计图(略)只要合理即可.
(2)从表中的数据看出 河流越长 其流域面积越大.
(3)河流的年径流量与河流所处的位置有关系.
五.后作业:
七年级数学上册教案5
教学目标
1、知识与技能
(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法、
(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算、
2、过程与方法
提高学生的识图能力,学会用运动变化的观点看问题、
3、情感态度与价值观
经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲、
重、难点与关键
1、重点:会用不同的方法表示一个角,会进行角度的换算是重点、
2、难点:角的表示、角度的换算是难点、
3、关键:学会观察图形是正确表示一个角的关键、
教具准备
多媒体设备、量角器、时钟、四棱锥、
教学过程
一、引入新课
1、观察时钟、四棱锥、
2、提出问题:
时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来、
学生活动:进行独立思考、画图,然后观看教师的演示过程、
教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角、
板书:角、
二、新授
1、角的概念、
(1)提出问题:
从上面活动过程中,你能知道角是由什么图形组成的吗?
学生回答:两条射线、
(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)
2、角的表示、
学生活动:阅读课本第137页有关内容,了解角的表示方法、
教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法、
请用适当的方法表示下图中的每个角、
学生活动:请一个学生板书练习,其余学生独立练习、
教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价、
学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论、
教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价、
答案:分别形成平角、周角、
3、角的度量、
教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算、
板书:1周角=_____,1平角=_____,1=____,1=____、
学生活动:思考并完成上面的填空、
例:把一个周角7等分,每一份是多少度的角(精确到分)?
教师讲解计算过程、
三、巩固练习
1、课本第139页练习、
2、计算:(1)4839+6741
(2)90-781940
(3)2230 (4)176523、
此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、
3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?
师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的'角度的关系,并请学生在小组中进行交流,从而得出正确的答案、
答案:76、5、
四、课堂小结
师生互动,完成本节课的小结:
1、什么是角?组成角的图形是什么?如何表示一个角?
2、本节课还复习了平面、周角?怎样得到这两种角?
3、角的度量单位是什么?它们是如何换算的?
五、作业布置
1、课本第144页习题4、3第1、2、3、4题、
2、选用课时作业设计、
第一课时作业设计
一、填空题、
1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________、
2、将上右图中的角用不同的方法表示出来,填入下表:
3 4
BCA ABC
3、( )=_____=_____6000=______=_______、
二、选择题、
4、在钟表上,1点30分时,时针与分针所成的角是( )、
A、150 B、165 C、135 D、120
5、下列各角中,不可能是钝角的角是( )、
A、 周角 B、 平角 C、 钝角 D、 直角
三、解答题、
6、计算:
(1)5328+4732 (2)1750-327
(3)1524 (4)31425(精确到1)、
7、如下图,分别确定四个城市相应钟表上时针与分针所成角的度数、
8、想一想,做一做、
(1)用字母表示图中的每个城市、
(2)请用字母在下图分别表示以北京为中心的每两个城市之间的夹角、
答案:
一、1、ADE,BDE,CED,B,AED
2、5 BCE BAC BAD
3、7、5 450 100 ( )
二、4、C 5、D
三、6、(1)101 (2)1423 (3)77 (4)62024
7、30,0,120,90 8、略
七年级数学上册教案6
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的.几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
七年级数学上册教案7
教学目标:
知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。
过程与方法:感受分类的思想,分类的依据。
情感态度价值观:感受数的对称美,
课堂教学过程
一.情境问题:
到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。
分数正分数,负分数。
有理数:正有理数
负有理数。
二.尝试应用:
1课本第8页练习。补充:整数集合,负整数集合,分数集合。
2判断:1.正整数和负整数统称为整数。
2.小数不是有理数。
3正数和负数统称为有理数。
4分数包括正分数和负分数。
http://baogao.oh100.com 是有理数。
三.补偿提高:
将下列的数填在相应的.括号中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整数集合:
负整数集合:
正分数集合:
负分数集合:
正数集合:
分数集合:
非正数集合:
自然数集合:
思考:既是正数又是整数的数是什么数?既是负数又是分数的数是什么数?
四.小结与反思:
本节课用到得思想,重要知识,注意问题,你的疑惑.
教后反思:
本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。
本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。
七年级数学上册教案8
一、教学目标
1、知识与技能:
(1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。
(2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。
2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。
3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。
4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。
二、教学重点、难点关键
1、教学重点:角的概念、表示方法及角度制的换算
2、教学难点:角的表示方法、角度制的换算
3、关键:学会观察图形是正确表示一个角的关键
三、学情分析
角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法
四、教学准备
为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。
五、教学用具:
量角器
六、教学过程
(一)引入新课
1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。
2提出问题:
时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。
学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。
(二)活动探究,建构新知
活动一
角的概念
师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:
a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;
b、角也可以看成由一条射线绕着它的端点旋转而成的图形。
(学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)
活动二
角的表示
师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)
生:角的表示方法有:
1、角的符号+三个大写字母,如:∠aob
2、角的符号+一个大写字母,如:∠o
(顶点处只有一个角时)
3、角的符号+数字如:∠1
4、角的符号+希腊字母如∠α
师:在用这些方法表示角的时候应该注意些什么呢?
生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。
师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。
(在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的.地方,教师可给于适当的引导、纠正)
尝试应用,反馈矫正
师:请同学们完成下面的练习
1、图中共有多少个角?请分别表示出来。
c
2、将图中的角用不同方法表示出来并填写下表
b
b
∠1
∠bca∠3∠4abc
ceda
获得积极深层次的体验,从而促进学生探究能力的发展)
活动三
角的度量与比较
ab
师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c
1、先估测图中所示各个角的大小
2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好
4、对于角的比较大小,你还能有什么好的方法吗?
生:1、∠b最大
2、∠a=28°∠b=91°∠c=45°
量角器的使用方法:“一对中,二合线,三读数”
1、点b射门最好。
2、对于角的比较大小,也可以通过叠合的方法来比较。
(通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)
(三)、巩固练习,迁移新知
试一试1、如图打台球的时候,球的反射角总是等于入射角。
请同学们估测球反弹后会撞击图中的哪一点?
(问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)
2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;
(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写
出哪些有关的角的和与差的关系式?o
dac
b
(问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)
3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。
(问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:
(1)度、分、秒是常用的角的度量单位;
(2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习
(四)、归纳总结,系统知识
师:本节课学习了哪些知识?
生:学习了角的概念、角的表示、角的比较与度量,角的换算。
师:通过本节课的实践、探索、交流与讨论,你有哪些收获?
生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等
(五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。
七年级数学上册教案9
一、背景知识
《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。
二、教学目标
1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。
2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。
3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。
三、教学重点、难点
重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。
难点:用有理数表示实际生活中的量。
四、教学设计
(一)创设情境 探求新知
如图表示某一天我国5个城市的最低气温。
请同学们合作讨论下列问题:
1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?
2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。
把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。
(1)具有相反意义的量是:意义相反,与值无关。
(2)区分“意义相反”与“意义不同”。
反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?
显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。
我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。
如:“+2”读做“正2”、“-3.3”读做“负3.3”等。
这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。
(二)运用新知 体验成功
填空:
1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;
2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;
3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;
4)下降米记做米,则上升米记做__________米;
5)如果向银行存入50元记为50元,那么-30.50元表示__________;
6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.
利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。
(请同学独立完成,然后同桌同学相互评价。)
(三) 师生互动,继续探究
(合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。
让学生四人小组合作讨论完成。
估计可能出现的正确结论有:
;
;
对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的`自信心.然后教师给出规范的分类:
正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.
(四) 分层练习,巩固提高
为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。
例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?
-8.4, 22, ,0.33, , -9.
练习1 判断表中各数属于什么数,在相应的空格内打“√” .
正整数
整数
分数
正数
负数
有理数
20xx
√
√
√
√
-4.9
0
-12
探究活动:
练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:
1)属于正数集合,但不属于整数集合的数;
2)属于整数集合,但不属于正数集合的数;
3)既属于正数集合,又属于整数集合的数.
将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?
通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。
(五)概括梳理,形成系统
采取师生互动的形式完成。即:
学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。
(六)布置作业
1、课后作业
2、设计题可根据自己的喜好和学有余利的同学完成。
七年级数学上册教案10
一、教学目标
(一)认知目标
1.借助频率或考虑实验观察到的结果,区分不可能发生、可能发生和必然发生这三个概念.
2.借助频数或频率,初步体会随机事件发生的可能性是有大有小的.
(二)情感目标
让学生在解决现实问题的同时,能受到爱国主义教育,增进对数学价值的认识.
二、教学重点
正确区分“不可能”、“必然”和“可能”.
三、教学难点
怎样分清不确定的现象和确定的现象.
四、教学过程
(一)导入新课
同学们还记得抛掷硬币的游戏吗?再抛10次试一试,记录一下,看看有________次正面朝上,有_______次反面朝上.
提问:在刚才的抛掷硬币游戏中,你发现正反面同时朝上有几次?
学生回答:0次;一次也没有;不可能.
回答得很好.在我们的周围有很多事情有可能发生,也有不可能发生的.下面再请同学们拿出准备好的骰子.
(二)新授
骰子都是正方体,它有六个面,每一面的点数分别是从1到6这六个数字中的一个.骰子的质地是均匀的,也就是说每个数字被掷得的机会都是一样的.
下面两人一组做掷骰子的游戏.
要求:一个同学掷骰子,另一个同学做记录,用“正”字法把每个点数出现的频数记录下来,填入备好的表里.掷完20次以后,两人交换角色,再记录下数据.
提问:“点数7”出现了多少次?
学生回答:0次.
从每个小组的频数表中,我们可以看到,不管如何,“点数7”出现的次数总是0.这并不是因为我们掷的时间还不够长或掷的`次数还不够多,而是因为骰子上根本没有“7”.所以,无论再挪多少次,“点数7”都不会出现.我们可以说“掷得的点数是7”这件事是不可能发生的.
提问:在刚才的游戏中,还有什么事是不可能发生的?
学生进行简单讨论.
让学生自由发言:大干“点数7”的点数,像8、9都不可能发生.
那么,可能发生的事是什么呢?
七年级数学上册教案11
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的.数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
七年级数学上册教案12
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的`印象?
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.
2、阅读教科书第119页的实验与探究,并思考有关问题。
七年级数学上册教案13
教学目标
知识与技能:
1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;
2.能利用求代数式的值解决较简单的实际问题;
过程与方法:
3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;
4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.
情感态度价值观:
5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.
教学重点
理解代数式的意义,会求代数式的值
教学难点
利用代数式求值推断代数式所反映的规律
教学方法
引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识
教学准备
多媒体,或投影仪,胶片
课时安排
1课时
教学过程
Ⅰ.巧设情景问题,引入课题
[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.
下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.
下面是一组数值转换机,写出图1的输出结果,找出图2的'转换步骤:
[生1]图1的输出结果是:6x-3.
图2的转换步骤:-3、×6.
[师]这位同学书写的跟你们的一样吗?
[生齐声]一样.
[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.
我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.
今天我们就来研究第三节:代数式求值.
Ⅱ.讲授新课
当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)
输入-2-
00.26
4.5
图1输出
图2输出
(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).
[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.
[生]
[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)
议一议:
填写下表,并观察下列两个代数式的值的变化情况:
(1)随着n的值逐渐变大,两个代数式的值如何变化?
(2)估计一下,哪个代数式的值先超过100?
(学生积极发言,大多同学填得对)
[生]
[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.
[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.
根据值的变化趋势,我估计:n2的值先超过100.
[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.
下面我们来做练习,进一步体会本节课的内容:
Ⅲ.课堂练习
(一)课本P99随堂练习
1.人体血液的质量约占人体体重的6%~7.5%.
(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?
(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量?
答案:(1)6%a千克~7.5%a千克
(2)亮亮的血液质量大约在2.1千克到2.625千克之间
(3)让学生估计计算一下
2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:
h=4.9t2,在月球上大约是:h=0.8t2.
(1)填写下表
(2)物体在哪儿下落得快?
(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.
答案:(1)
(2)地球
(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒
(二)试一试
1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?
解:本题可列表进行比较.
通过估计得:当|a|>2时,a2-a>0
2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?
解:
从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.
Ⅳ.课时小结
通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.
(2)计算.
Ⅴ.课后作业
(一)看课本P98;P99的读一读.
(二)课本习题3.31、2、3、4.
(三)(1)预习内容:P102~103
(2)预习提纲
1.项的系数和项的概念.
2.进一步理解字母表示数的意义.
Ⅵ.活动与探究
1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?
根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?
过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.
结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:
a2+b2+2ab=(a+b)2
根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.
2.已知=7,求的值.
过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.
结果:因为=7,所以:=.
所以:原式=2×7-×=13.
板书设计
§3.3代数式求值
一、“数值转换机”求值三、课堂练习
二、议一议
四、课时小结
规律五、课后作业
七年级数学上册教案14
一、有理数的意义
1.有理数的分类
知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。
2.数轴
知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数
3.相反数
知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4.绝对值
知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a<0,则∣a∣=﹣a;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算
1.有理数的加法
知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)
多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2.有理数的减法
知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3.有理数的加减混合运算
知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。
4.有理数的乘法
知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的'个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。
乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5.有理数的除法
知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。
除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。
注意:倒数与相反数的区别
6.有理数的乘方
知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。
乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。
7.有理数的混合运算
知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。
技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。
七年级数学上册教案15
七年级上2.5有理数的减法(一)教案
教学目标:
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点运用有理数减法法则做有理数减法运算。
教学难点有理数减法法则的得出。
教具学具多媒体、教材、计算器
教学方法研讨法、讲练结合
教学过程一、引入新课:
师:下面列出的.是连续四周的最高和最低气温:
第1周第二周第三周第四周
最高气温+6℃0℃+4℃-2℃
最低气温+2℃-5℃-2℃-5℃
周温差
求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:
例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题
教学过程四、练习反馈:
师:巡视个别指导,订正答案。
教学过程五、小结:
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法法则:
减去一个数,等于加上
这个数的相反数。例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
【七年级数学上册教案】相关文章:
七年级上册数学教学教案01-07
七年级数学上册教案01-11
七年级上册数学教案01-16
七年级上册数学角教案09-26
七年级数学上册教案01-17
[精选]七年级上册数学教案07-02
七年级下数学教案上册12-10
七年级上册数学教案05-06
数学上册教案01-15
人教版七年级数学上册教案01-27