七年级数学上册教案

时间:2024-07-16 14:05:05 数学教案 我要投稿

七年级数学上册教案(精华)

  作为一名老师,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?以下是小编为大家整理的七年级数学上册教案,欢迎阅读与收藏。

七年级数学上册教案(精华)

七年级数学上册教案1

  【教学目标】

  知识与技能:了解并掌握数据收集的基本方法。

  过程与方法:在调查的过程中,要有认真的态度,积极参与。

  情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

  【教学重难点】

  重点:掌握统计调查的基本方法。

  难点:能根据实际情况合理地选择调查方法。

  【教学过程】

  讲授新课

  像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

  调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

  在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

  例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

  为了使抽取的50只灯泡能很好地反映500只灯泡的'情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

  上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

  师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

  学生小组合作、讨论,学生代表展示结果。

  教师指导、评论。

  师:除了问卷调查外,我们还有哪些方法收集到数据呢?

  学生小组讨论、交流,学生代表回答。

  师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

  (1)你班中的同学是如何安排周末时间的?

  (2)我国濒临灭绝的植物数量;

  (3)某种玉米种子的发芽率;

  (4)学校门口十字路口每天7:00~7:10时的车流量。

七年级数学上册教案2

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的'思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.

七年级数学上册教案3

  一、教学目标:

  (一)教学知识点

  1。与身边熟悉的事物做比较感受百万分之一等较小的数据并用科学记数法表示较小的数据。

  2。近似数和有效数字并按要求取近似数。

  3。从统计图中获取信息并用统计图形象地表示数据。

  (二)能力训练要求

  1。体会描述较小数据的方法进一步发展数感。

  2。了解近似数和有效数字的概念能按要求取近似数体会近似数的意义在生活中的作用。

  3。能读懂统计图中的信息并能收集、整理、描述和分析数据有效、形象地用统计图描述数据发展统计观念。

  (三)情感与价值观要求:1。培养学生用数学的意识和信心体会数学的应用价值。2。发展学生的.创新能力和克服困难的勇气。

  二、教学重点:1。感受较小的数据。

  2。用科学记数法表示较小的数。

  3。近似数和有效数字并能按要求取近似数。

  4。读懂统计图并能形象、有效地用统计图描述数据。

  教学难点:形象、有效地用统计图描述数据。

  教学过程:。创设情景引入新课

  三。讲授新课:请你用熟悉的事物描述一些较小的数据:大象是世界上最大的陆栖动物它的体重可达几吨。世界第一高峰——珠穆朗玛峰它的海拔高度约为8848米。

  1。哪些数据用科学记数法表示比较方便?举例说明。

  2。用科学记数法表示下列各数:

  (1)水由氢原子和氧原子组成其中氢原子的直径约为0。0000000001米。

  (2)生物学家发现一种病毒的长度约为0。000043毫米;

  (3)某种鲸的体重可达136000000千克;

  (4)20xx年5月19日国家邮政局特别发行“万众一心抗击‘非典’”邮票收入全部捐给卫生部门用以支持抗击“非典”斗争其邮票的发行量为12500000枚。

  四。课时小结:我们这节课回顾了以下知识:

  1。又一次经历感受了百万分之一进一步体会描述较小数据的方法:与身边事物比较进一步学习了利用科学记数法表示较小的数据。

  2。在实际情景中进一步体会到了近似数的意义和作用并按要求取近似数和有效数字。

  3。又一次欣赏了形象的统计图并从中获取有用的信息。

  (1)根据上表中的数据制作统计图表示这些主要河流的河长情况你的统计图要尽可能的形象。

  (2)从上表中的数据可以看出河流的河长与流域面积有什么样的联系?

  (3)在中国地形图上找出主要河流你认为河流年径流量与河流所处的地理位置有关系吗?

  制作形象的统计图首先要处理好数据即从表格中计算出这几条河流长度的比例然后选择最大或最小作为基准量按比例形象画出即可。

  (1)形象统计图(略)只要合理即可。

  (2)从表中的数据看出河流越长其流域面积越大。

  (3)河流的年径流量与河流所处的位置有关系。

  五。课后作业:

七年级数学上册教案4

  1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

  进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  分析题目中的数量关系,用式子表示数量关系.

  (设计者: )

  一、创设情境 明确目标

  青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

  (1)2 h行驶的路程是多少?3 h呢?t h呢?

  (2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

  (3)回顾以前所学的`知识,你还能举出用字母表示数或数量关系的例子吗?

  二、自主学习 指向目标

  自学教材第54至55页,完成下列问题:

  1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

  (1)列车2 h行驶的路程为__200__km.

  (2)列车3 h行驶的路程为__300__km.

  (3)列车t h行驶的路程为__100t__km.

  2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

  三、合作探究 达成目标

  用字母表示数

  活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

  (2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

  (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

  (4)用式子表示数n的相反数.

  【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

  【小组讨论】用字母表示数有什么意义?

  【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

  【针对训练】见“学生用书”.

  用字母表示简单的数量关系

  活动二:阅读教科书例2中的四个问题,思考:

  顺水行驶时,船的速度=________+________;

  逆水行驶时,船的速度=________-________.

  解答过程见教材第55页例2的解答过程.

  【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

  【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

  【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.

  注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

  2.字母和数字相乘时,省略乘号,并把数字放到字母前;

  3.出现除式时,用分数的形式表示;

  4.结果含加减运算的,需要带单位时,式子要用“()”;

  5.系数是带分数时,带分数要化成假分数.

  【针对训练】见“学生用书”.

  四、总结梳理 内化目标

  1.用字母表示数的意义.

  2.用含有字母的式子表示数量关系的意义.

  3.用含有字母的式子表示数量关系时要注意的问题.

  实际问题―→用字母表示数―→用字母表示数量关系

  《2.1整式》同步练习含答案

  1. 其中长方形的长为a,宽为b.

  (1)阴影部分的面积是多少?

  (2)你能判断它是单项式或多项式吗?它的次数是多少?

  《2.1整式》课后练习含答案

  知识要点

  1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

  (1)不含加减运算;

  (2)可以含乘、除、乘方运算,但分母中不能含有字母.

  2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

  3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

  4.整式:单项和多项式统称整式.

七年级数学上册教案5

  教学目标:

  1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。

  2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程 ,发展学生的动手操作、自主探究、合作交流和分析归纳能力。

  3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生获 得成功的体验,增强学习数学的兴趣。

  教学重点:

  引导学生用一个平面去截一个正方体的切截活动,体会截面和几 何体的关系 ,充分让学生动手操作、自主探索、合作交流。

  教学难点:

  从切截活动中发现规律,能应用规律来解决问题。

  教学过程:

  教学过程设计思路

  一、情境导入[演示] 演示现实生活中物体的截面图。

  [教师活动]:引导学生观察,让学生充分想象并回答是何种物体的截面,并请学生进行实际操作,让全体学生体会截出的面(截面)的含义。

  [学生活动]: 学生动手操作,体会截面的含义。

  二、活动操作:用一个平面去截一个正方体的切截活动

  [教师活动]:提出问题:用一个平面去截一个正方体,所得到的截面可能是什么形状?

  引导学生大胆猜想,让他们想象所得的截面可能的形状。让学生采取分组讨论、合作交流的形式。鼓励学生积极发言,回答问题。

  [学生活动]:学生大胆猜想、积极在小组内讨论、积极回答问题,得出用一个平面去截一个正方体所得截面有可能的形状:三角形、正方形、长方形……

  [教师活动]:教师引导学生 进行实际操作,分小组切截正方体的萝卜,鼓励学生从切截活动中去验证自己的猜想。

  [学生活动]:学生分小组操作,在操作中去验证自己的猜想,并通过小组讨论,合作 交流积极发现在猜想中没想到的截面图形。

  [教师活动]:教师在学生操作活动中巡视学生,参与学生的讨论与交流,鼓励学生在小组活动中大胆发表自己的见解。

  [教师活动]:全班实物切截活动结束,教师鼓励切截活动的各个小组请代表发言,积极鼓励他们说出能截到多少个不同的截面,选取一些小组让他们进行演示说明。并积极肯定他们的做法。

  [学生活动]:学生活动小组代表大胆发言,并进行一定的演示说明。

  [教师活动]:提出,刚才的实物操作中没能找出所有不同的截面形状,还可以通过计算机辅助教学的操作,对一个正方体进行无限次的切截活动。鼓励学生利用“几何画板”制作的实验操作型对一个正方体进行动态的 切截活动,鼓励他们在操作中积极观察截面的产生和变化的过程,并从中去发现一定的规律。

  [学生活动]:学生利用对正方体进行无限次的动态的切截,并从中去观察截面产生和变化的过程,学生利用中的动画功能,身临其境的体会截面产生和变化的过程,通过自主操作、小组讨论、合作交流发现截面的各种形状,得出截面产生的规律。(一个平面去截一个正方 体,所得截面是由于这个平面与正方体的若干个平面相交的结果。若与三个面相交得三条边,则截面是三角形,若与四个面相交,则截面是四边形……依此类推。)

  分别拖动A、B、C点可移动平面,双击动画按扭可使图形旋转,单击鼠标左键停止旋转。拖动点P可使图形旋转。

  [教师活动]:教师积极鼓励各小组请代表发言,说出他们利用实验操作型所观察到的截面的各种形状产生、变化的过程,用自己的语言说明为什么会产生不同的截面的原因。积极肯定同学们的'正确推理。

  [学生活动]:学生积极思考发言,大胆提出自己的观点,说出他们得到的不同的截面形状,特别是找出五边形、六边形等等。以及为什么产生不同截面的原因。

  [教师活动]:小结同学们的发言。肯定学生的正确说法

  三、知识应用

  [教师活动] [演示]:鼓励学生完成所给出的其他立体图形的截面问题(能说出截面是什么形状)

  [教师活动]:教师提出截一个几何体的知识在实际生活当中作用很大。

  [演示]播放医学上发明CT的视频文件,让学生体会数学知识在现实生活当中的应用。

  [教师活动]:提问学生,谈观看录像的体会,谈数学知识和现实生活的联系,让学生畅所欲言,激发学生学习数学的热情。

  四、知识延伸

  [教师活动]:提出让学生课后试一试,用一个平面截一个正方体能不能得到一个七边形。(这个问题通过学生对截面的产生规律的认识来解)从生活中物体的截面图出发,体现数学知识于生活。

  利用电脑演示色彩丰富的图片,激发学生的求知欲。

  引导学生大胆猜想,使学生体会探索数学问题是从猜想开始的。

  培养学生体会“想—做——想”的数学活动过程,

  让学生动手操作、自主探索、合作交流。发展学生的动手操作、自主探究、合作交流和推理能力,提高学生分析问题和解决问题的能力。

  从活动中去体会空间几何体与截面的关系。

  利用实物来进行切截活动,学生会在有限次的切截中得到一定的截面图形, 但无法体会截面的产生和变化的整个过程,很难从实物切截活动中寻找出规律。

  因此有针对性地设计了网络环境下的切截活动,在网络中让学生利用教师 制作的实验操作型对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生通过计算机自主操作、合作交流,更诱发学生的探求欲。在设计中利用空间图形的动画,方便学生从各个角度观察切截结果,这样能更好地引导学生积极地展开思维,自我挖掘各图形间的内在联系。这是 一个实验操作型的,通过人机互动,使不同的学生在各自的操作中都有不同的发现,更适应不同层次的学生的发展。

  让学生自己发现截面产生的规律,为学生继续探讨能否截出七边形作铺垫。

  利用演示,更生动地介绍了医学中CT的产生过程, 更生动地说明了数学知识在实际生活当中的广泛应用。

  给学生留下广阔的思维空间,不断激发学生的探索精神。

  学生通过操作,完成所给的练习(说出截面是什么形状),并积极发言,全班交流。

  学生观看视频文件,体会本节课的知识在现实生活当中的作用。

七年级数学上册教案6

  【学习目标】

  1、理解什么是一元一次方程。

  2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】能验证一个数是否是一个方程的解。

  1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是( )

  A.6x+6(x-2 000)=150 000

  B.6x+6(x+2 000)=150 000

  C.6x+6(x-2 000)=15

  D.6x+6(x+2 000)=15

  2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.

  3.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,则原正方形花圃的边长是多少?(只列方程)

  《3.1.等式的`性质》同步四维训练含答案

  知识点一:等式的性质1

  1.下列变形错误的是(D )

  A.若a=b,则a+c=b+c

  B.若a+2=b+2,则a=b

  C.若4=x-1,则x=4+1

  D.若2+x=3,则x=3+2

  2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C )

  A.a=-b

  B.-a=b

  C.a=b

  D.a,b可以是任意有理

  《3.1从算式到方程》同步练习含解析

  7.解:把x=3代入方程,得:15-a=3,

  解得:a=12.

  故选B.

  根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

  本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

  8.解:A、7x-4=3x是方程;

  B、4x-6不是等式,不是方程;

  C、4+3=7没有未知数,不是方程;

  D、2x<5不是等式,不是方程;

  故选:A.

  根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

七年级数学上册教案7

  教学目标和要求:

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  教学重点和难点:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1、 列代数式

  (1)若正方形的边长为a,则正方形的面积是 ;

  (2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;

  (3)若x表示正方形棱长,则正方形的体积是 ;

  (4)若m表示一个有理数,则它的相反数是 ;

  (5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

  2、 请学生说出所列代数式的意义。

  3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

  由小组讨论后,经小组推荐人员回答,教师适当点拨。

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的.开放性。)

  二、讲授新课:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

  2.练习:判断下列各代数式哪些是单项式?

  (1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

  (加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

  4.例题:

  例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

  ①x+1; ② ; ③ ④- a2b。

  答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;

  ③是,它的系数是,次数是2; ④是,它的系数是- ,次数是3。

  例2:下面各题的判断是否正确?

  ①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥ r2h的系数是 。

  通过其中的反例练习及例题,强调应注意以下几点:

  ①圆周率是常数;

  ②当一个单项式的系数是1或-1时,1通常省略不写,如x2,-a2b等;

  ③单项式次数只与字母指数有关。

  5.游戏:

  规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

  (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

  6.课堂练习:课本p56:1,2。

  三、课堂小结:

  ①单项式及单项式的系数、次数。

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

  四、课堂作业: 课本p59:1,2。

  板书设计:

  《单项式》 1.单项式的定义: 2.例1: 例2: 学生练习:

  教学后记:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。

七年级数学上册教案8

  教学目标

  1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点

  两个负数大小的比较

  知识重点

  绝对值的概念

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20|-10|=10显然|0|=0

  这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

  验数学知识与生活实际的联系.

  因为绝对值概念的几何意义是数形转化的典型

  模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

  合作交流

  探究规律

  例1求下列各数的绝对值,并归纳求有理数a的绝对

  有什么规律。、

  -3,5,0,+58,0.6

  要求小组讨论,合作学习.

  教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

  巩固练习:教科书第15页练习.

  其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.

  求一个数的绝时值的法则,可看做是绝对值概

  念的一个应用,所以安排此例.

  学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

  结合实际发现新知

  引导学生看教科书第16页的图,并回答相关问题:

  把14个气温从低到高排列;

  把这14个数用数轴上的点表示出来;

  应怎样比较两个数的大小呢。

  学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:

  在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

  在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

  想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

  要求学生在头脑中有清晰的图形.

  让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的'想象。

  课堂练习

  例2,比较下列各数的大小(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式

  练习:第18页练习

  小结与作业

  课堂小结

  怎样求一个数的绝对值,怎样比较有理数的大小。

  本课作业

  1,必做题:教产书第19页习题1,2,第4,5,6,10

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

  这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

  习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意

  义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

  数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

  2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3,有理数大小的比较法则是大小规定的直接归纳,其中第

  (2)条学生较难理解,教学

  中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

  大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

  4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

  学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学上册教案9

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的`多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学上册教案10

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的'周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学上册教案11

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

  3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的'符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

七年级数学上册教案12

  教学目标:

  1、了解正数与负数是实际生活的需要。

  2、会判断一个数是正数还是负数。

  3、会用正负数表示互为相反意义的量。

  教学重点:

  会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

  教学难点:

  负数的引入。

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

  想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“—”(读作负)号来表示(零除外)。

  活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

  讨论 什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。

  总结 正数是大于0的数,负数是在正数前面加“—”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示。

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么—00.3 g表示什么?

  【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。例如,9:15记为—1,10:45记为1等等。依此类推,上午7:45应记为(  )

  A.3  B.—3  C.—2.5  D.—7.45

  【点拨】读懂题意是解决本题的关键。7:45与10:00相差135分钟。

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的'数,在正数前加上“—”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

  1、下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期 日 一 二 三 四 五 六

  (元) +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

  2、数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4。用“+”表示“站”,“—”(负号)表示“蹲”。

  (1)由一个同学大声喊:+1,—2,—3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:—1,—2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

  (五)课堂跟踪反馈

  夯实基础

  1、填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为xxx吨。

  (2)如果4年后记作+4年,那么8年前记作xxx年。

  (3)如果运出货物7吨记作—7吨,那么+100吨表示xxx。

  (4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了xxx。

  2、中午12时,水位低于标准水位0。5米,记作—0。5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0。5米。

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3、粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

  (六)课时小结

  1、与以前相比,0的意义又多了哪些内容?

  2、怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学上册教案13

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的.是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

七年级数学上册教案14

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的'射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

七年级数学上册教案15

  学习目标:

  1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

  2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

  3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

  重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

  学习过程:

  一、课前预习导学

  1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

  2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

  第1题

  第2题

  3、如图,若是中点,是中点,

  (1)若,_________;

  (2)若,_________。

  二、课堂学习1、议一议:

  (1)、在平面内画一个点,过这个点画直线,能画多少条?

  (2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

  (3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

  总结:“过两点有______,并且____ ”

  思考:过平面上三点中的每两点画直线,可画多少条?

  2、做一做:已知两点a、b

  (1)画线段ab(连接ab)

  (2)延长线段ab到点c,使bc=ab

  注意:我们把上图中的点b叫做线段ac的。

  3、想一想:(1)如果点b是线段ac的'中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

  (2)如何用符号语言表述中点的概念?

  总结:如果点b是线段ac的中点,那么;

  如果,那么b是线段ac的中点。

  4、知识运用:

  例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

  练习:1、如图ab=8cm,点c是ab的中点,

  点d是cb的中点,则ad=____cm

  2、如图,下列说法,不能判断点c是线段ab的中点的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

  三、课堂检测1.下列说法中,正确的是()

  a.射线oa和射线ao表示同一条射线;b.延长直线ab;

  c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

  2.如果要在墙上固定一根木条,你认为至少要钉子()

  a.1根b.2根c.3根d.4根

  3.如图,若是中点,是中点,

  (1)若,,_________;(2)若,_________。

  4.如图在平面内有a、b、c、d四点,按要求画图。

  (1)画直线ab、射线bc、线段bd

  (2)连结ac交bd于点o

  (3)画射线cd并反向延长射线cd,

  (4)连结ad并延长至点e,使ad=de。

  四、课后作业

  1、下列说法中正确的是()

  a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

  c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米

  2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

  3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

  4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。

  5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

【七年级数学上册教案】相关文章:

七年级上册数学教学教案01-07

七年级数学上册教案01-11

七年级上册数学教案01-16

七年级上册数学角教案09-26

七年级数学上册教案01-17

[精选]七年级上册数学教案07-02

七年级下数学教案上册12-10

七年级上册数学教案05-06

数学上册教案01-15

人教版七年级数学上册教案01-27