八年级数学教案

时间:2024-06-22 17:24:21 数学教案 我要投稿

八年级数学教案15篇[必备]

  作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编为大家收集的八年级数学教案,希望对大家有所帮助。

八年级数学教案15篇[必备]

八年级数学教案1

  一、教学目的

  1.使学生进一步理解自变量的取值范围和函数值的意义.

  2.使学生会用描点法画出简单函数的图象.

  二、教学重点、难点

  重点:1.理解与认识函数图象的意义.

  2.培养学生的看图、识图能力.

  难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

  三、教学过程

  复习提问

  1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

  2.结合函数y=x的图象,说明什么是函数的图象?

  3.说出下列各点所在象限或坐标轴:

  新课

  1.画函数图象的方法是描点法.其步骤:

  (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

  一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

  (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

  (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

  一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的`几个点连成表示函数的曲线(或直线).

  2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

  小结

  本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

  练习

  ①选用课本练习(前一节已作:列表、描点,本节要求连线)

  ②补充题:画出函数y=5x-2的图象.

  作业

  选用课本习题.

  四、教学注意问题

  1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

  2.注意充分调动学生自己动手画图的积极性.

  3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

八年级数学教案2

  教学目标:

  1、知道负整数指数幂=(a≠0,n是正整数)、

  2、掌握整数指数幂的运算性质、

  3、会用科学计数法表示小于1的数、

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

  教学过程:

  一、课堂引入

  1、回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an = am+n(m,n是正整数);

  (2)幂的乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2、回忆0指数幂的规定,即当a≠0时,a0 = 1、

  3、你还记得1纳米=10?9米,即1纳米=米吗?

  4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、

  三、科学记数法:

  我们已经知道,一些较大的.数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012 = 1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此发现其中的规律,从而有0。0000000012 = 1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

八年级数学教案3

  一、教学内容:

  本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

  本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

  重点:掌握完全平方公式,会运用公式进行简单的计算。

  难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

  三、教学目标

  (1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

  (2)进一步发展学生的'符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

  (3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

  (4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

  四、学情分析与教法学法

  学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

  学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

  总结反思中获得数学知识与技能。

  教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

  五、教学过程

  (略)

  六、教学评价

  在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

  在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

八年级数学教案4

  教学内容

  本节课主要介绍全等三角形的概念和性质.

  教学目标

  1.知识与技能

  领会全等三角形对应边和对应角相等的有关概念.

  2.过程与方法

  经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

  3.情感、态度与价值观

  培养观察、操作、分析能力,体会全等三角形的应用价值.

  重、难点与关键

  1.重点:会确定全等三角形的对应元素.

  2.难点:掌握找对应边、对应角的方法.

  3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的'边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

  四张大小一样的纸片、直尺、剪刀.

  教学方法

  采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

  一、动手操作,导入课题

  1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

  2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

  【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

  【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

  学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

  【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

  概念:能够完全重合的两个三角形叫做全等三角形.

  【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

  【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

  【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

  【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

  【交流讨论】通过同桌交流,实验得出下面结论:

  1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

  2.这时它们的三个顶点、三条边和三个内角分别重合了.

  3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

八年级数学教案5

  平方差公式

  学习目标:

  1、能推导平方差公式,并会用几何图形解释公式;

  2、能用平方差公式进行熟练地计算;

  3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

  学习重难点:

  重点:能用平方差公式进行熟练地计算;

  难点:探索平方差公式,并用几何图形解释公式.

  学习过程:

  一、自主探索

  1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

  (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

  2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

  3、你能用自己的语言叙述你的发现吗?

  4、平方差公式的特征:

  (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

  (2)、公式中的a与b可以是数,也可以换成一个代数式。

  二 、试一试

  例1、利用平方差公式计算

  (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

  例2、利用平方差公式计算

  (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

  三、合作交流

  如图,边长为a的大正方形中有一个边长为b的小正方形.

  (1)请表示图中阴影部分的.面积.

  (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

  (3)比较(1)(2)的结果,你能验证平方差公式吗?

  四、巩固练习

  1、利用平方差公式计算

  (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

  (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

  2、利用平方差公式计算

  (1)803797 (2)398402

  3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

  A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

  4.下列多项式的乘法中,可以用平方差公式计算的是( )

  A.(a+b)(b+a) B.(-a+b)(a-b)

  C.( a+b)(b- a) D.(a2-b)(b2+a)

  5.下列计算中,错误的有( )

  ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

  ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

  A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

  6.若x2-y2=30,且x-y=-5,则x+y的值是( )

  A.5 B.6 C.-6 D.-5

  7.(-2x+y)(-2x-y)=______.

  8.(-3x2+2y2)(______)=9x4-4y4.

  9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

  10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

  11.利用平方差公式计算:20 19 .

  12.计算:(a+2)(a2+4)(a4+16)(a-2).

  五、学习反思

  我的收获:

  我的疑惑:

  六、当堂测试

  1、下列多项式乘法中能用平方差公式计算的是( ).

  (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

  2、填空:(1)(x2-2)(x2+2)=

  (2)(5x-3y)( )=25x2-9y2

  3、计算:

  (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

  4.利用平方差公式计算

  ①1003997 ②14 15

  七、课外拓展

  下列各式哪些能用平方差公式计算?怎样用?

  1) (a-b+c)(a-b-c)

  2) (a+2b-3)(a-2b+3)

  3) (2x+y-z+5)(2x-y+z+5)

  4) (a-b+c-d)(-a-b-c-d)

  2.2完全平方公式(1)

八年级数学教案6

  教学目标

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题

  教学重点:平行四边形的判定方法及应用

  教学难点:平行四边形的判定定理与性质定理的灵活应用

  一.引

  小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  二.探

  阅读教材P44至P45

  利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2对角线互相平分的四边形是平行四边形。

  证一证

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  证明:(画出图形)

  平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学教案7

  知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数

  能力目标:会用变化的量描述事物

  情感目标:回用运动的观点观察事物,分析事物

  重点:函数的概念

  难点:函数的概念

  教学媒体:多媒体电脑,计算器

  教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围

  教学设计:

  引入:

  信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?

  新课:

  问题:(1)如图是某日的气温变化图。

  ① 这张图告诉我们哪些信息?

  ② 这张图是怎样来展示这天各时刻的'温度和刻画这铁的气温变化规律的?

  (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:

  ① 这表告诉我们哪些信息?

  ② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?

  一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  范例:例1 判断下列变量之间是不是函数关系:

  (5) 长方形的宽一定时,其长与面积;

  (6) 等腰三角形的底边长与面积;

  (7) 某人的年龄与身高;

  活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系

  思考:自变量是否可以任意取值

  例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。

  (1) 写出表示y与x的函数关系式.

  (2) 指出自变量x的取值范围.

  (3) 汽车行驶200km时,油箱中还有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活动2:练习教材9页练习

  小结:(1)函数概念

  (2)自变量,函数值

  (3)自变量的取值范围确定

  作业:18页:2,3,4题

八年级数学教案8

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1、平移

  2、平移的性质:

  ⑴经过平移,对应点所连的线段平行且相等;

  ⑵对应线段平行且相等,对应角相等。

  ⑶平移不改变图形的大小和形状(只改变图形的位置)。

  (4)平移后的图形与原图形全等。

  3、简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;

  ⑵需要平移的方向;

  ⑶需要平移的距离或一个对应点的`位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;

  ⑵作出这些点平移后的对应点;

  ⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1、旋转

  2、旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3、简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的“基本图案”

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:

  ⑴平移变换;

  ⑵旋转变换;

  ⑶轴对称变换;

  ⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;

  ⑹轴对称变换与平移变换的组合。

八年级数学教案9

  课题:一元二次方程实数根错例剖析课

  【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

  【课前练习】

  1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

  【典型例题】

  例1 下列方程中两实数根之和为2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  错答: B

  正解: C

  错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

  例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  错解 :B

  正解:D

  错因剖析:漏掉了方程有实数根的前提是△≥0

  例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

  错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

  错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

  正解: -1≤k<2且k≠

  例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

  错解:由根与系数的关系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

  =2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

  正解:m = 2

  例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

  错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范围是m≠±1且m≥ -

  错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

  正解:m的取值范围是m≥-

  例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

  错解:∵方程有整数根,

  ∴△=9-4a>0,则a<2.25

  又∵a是非负数,∴a=1或a=2

  令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

  ∴方程的整数根是x1= -1, x2= -2

  错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

  正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

  【练习】

  练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

  (1)求k的取值范围;

  (2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

  解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

  ∴当k< 时,方程有两个不相等的实数根。

  (2)存在。

  如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

  ∴当k= 时,方程的两实数根x1、x2互为相反数。

  读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

  解:上面解法错在如下两个方面:

  (1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

  (2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

  练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

  解:(1)当a=0时,方程为4x-1=0,∴x=

  (2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

  ∴当a≥ -4且a≠0时,方程有实数根。

  又因为方程只有正实数根,设为x1,x2,则:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

  【小结】

  以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

  1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

  2、运用根与系数关系时,△≥0是前提条件。

  3、条件多面时(如例5、例6)考虑要周全。

  【布置作业】

  1、当m为何值时,关于x的`方程x2+2(m-1)x+ m2-9=0有两个正根?

  2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

  求证:关于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

  考题汇编

  1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

  2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

  (1)若方程的一个根为1,求m的值。

  (2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

  3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

  4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

八年级数学教案10

  分式方程

  教学目标

  1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

  2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

  教学重点:

  将实际问题中的等量 关系用分式方程表示

  教学难点:

  找实际问题中的等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

  根据题意,可得方程___________________

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

  这 一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地 所需的'时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

  根据题意,可得方程_ _____________________。

  学生分组探讨、交流,列出方程.

  三.做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

  四.议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、 随堂练习

  (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

  (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

  六、学 习小结

  本节课你学到了哪些知识?有什么感想?

  七.作业布置

八年级数学教案11

  教学目标:

  1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

  2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

  3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

  重点与难点:

  重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

  难点:分析典型图案的设计意图。

  疑点:在设计的图案中清晰地表现自己的设计意图

  教具学具准备:

  提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

  教学过程设计:

  1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

  明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

  2、课本

  1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

  评注:图案是密铺图案的`代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

  评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

  (二)课内练习

  (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

  (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

  (三)议一议

  生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

  (四)课时小结

  本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

  通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

  八年级数学上册教案(五)延伸拓展

  进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案12

  一、学习目标

  1.多项式除以单项式的运算法则及其应用。

  2.多项式除以单项式的运算算理。

  二、重点难点

  重点:多项式除以单项式的运算法则及其应用。

  难点:探索多项式与单项式相除的运算法则的过程。

  三、合作学习

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1.计算下列各式:

  (1)(am+bm)÷m;

  (2)(a2+ab)÷a;

  (3)(4x2y+2xy2)÷2xy。

  2.提问:

  ①说说你是怎样计算的;

  ②还有什么发现吗?

  (三)总结法则

  1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX

  2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX

  四、精讲精练

  例:(1)(12a3—6a2+3a)÷3a;

  (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

  (3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  随堂练习:教科书练习。

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的`指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

  E、多项式除以单项式法则。

八年级数学教案13

  一、教材分析:

  《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

  本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

  (一)知识目标:

  1、要求学生掌握正方形的概念及性质;

  2、能正确运用正方形的性质进行简单的计算、推理、论证;

  (二)能力目标:

  1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

  2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

  (三)情感目标:

  1、让学生树立科学、严谨、理论联系实际的良好学风;

  2、培养学生互相帮助、团结协作、相互讨论的团队精神;

  3、通过正方形图形的完美性,培养学生品格的完美性。

  二、学生分析:

  该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

  三、教法分析:

  针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

  通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

  四、学法分析:

  本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

  五、教学程序:

  第一环节:相关知识回顾

  以提问的形式复习的平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

  第二环节:新课讲解通过学生们的发现引出课题“正方形”

  1、正方形的定义

  引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的`矩形,从而总结出正方形的性质。

  2、正方形的性质

  定理1:正方形的四个角都是直角,四条边都相等;

  定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

  以上是对正方形定义和性质的学习,之后是进行例题讲解。

  3、例题讲解

  求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示

  4、课堂练习

  第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

  第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

  5、课堂小结

  此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

  6、作业设计

  作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案14

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的.平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

八年级数学教案15

  学习重点:函数的概念 及确定自变量的取值范围。

  学习难点:认识函数,领会函数的意义。

  【自主复习知识准备】

  请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

  【自主探究知识应用】

  请看书72——74页内容,完成下列问题:

  1、 思考书中第72页的问题,归纳出变量之间的关系。

  2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

  3、 归纳出函数的定义,明确函数定义中必须要满足的条件。

  归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  补充小结:

  (1)函数的定义:

  (2)必须是一个变化过程;

  (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。

  三、巩固与拓展:

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

  (1)写出表示y与x的函数关系式.

  (2)指出自变量x的取值范围.

  (3) 汽车行驶200千米时,油箱中还有多少汽油?

  【当堂检测知识升华】

  1、判断下列变量之间是不是函数关系:

  (1)长方形的宽一定时,其长与面积;

  (2)等腰三角形的底边长与面积;

  (3)某人的年龄与身高;

  2、写出下列函数的解析式.

  (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的`式子.

  (2)汽车加油时,加油枪的流量为10L/min.

  ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

  ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系.

  (3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

  八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

【八年级数学教案】相关文章:

有关八年级数学教案八年级数学教案全套10-03

八年级数学教案12-04

八年级数学教案03-05

八年级数学教案【精】02-01

【精】八年级数学教案01-21

【推荐】八年级数学教案01-31

【热门】八年级数学教案01-31

【荐】八年级数学教案01-17

八年级数学教案优秀07-27

八年级数学教案(推荐)06-21