(荐)五年级数学上册教案
作为一无名无私奉献的教育工作者,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!以下是小编精心整理的五年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学上册教案1
设计思想:本课教学设计依据利用音像教材培养学生数学素质的课题研究目标,以现代教育思想、理论为指导,以认知主义学习理论为基础,以培养智能型、创造型人才为目的,试图通过对教学的科学设计,实现音像教材在教学过程中的有机渗透,充分挖掘音像教材在帮助学生正确理解相遇问题的数量关系,探究解答方法,培养学生知识与能力素质、身体心理素质等方面发挥的作用,全课采用启发式电化教学,本教学设计力求体现以下特点:
1。充分体现学生的主体地位,重视挖掘学生的认知潜力。运用现代教育媒体首先设计一道准备题,通过微机演示让学生感知相通问题的结构特点,然后通过列表、讨论、分析,让学生理解相遇问题的数量关系,充分发挥电教媒体的功能优势,为学生提供多种信息与表象,在教师适时启发点拔下,通过自己动脑、动手、动口,积极思维,探索和发现相遇问题的解答方法,在巩固练习过程中运用所学知识解决与相遇问题类似的实际问题,实现知识、技能和方法的迁移,充分体现了知识与能力素质的培养过程。
2。充分发挥教师的主导作用,在教师的指导下,通过相遇问题的学习及解决问题思维训练,培养学生勤学善思、主动进取的良好学习习惯和学习兴趣,利用现代教育媒体创设情境,使学生在乐中学习,在提高学习效率的同时,培养了学生的身体心理素质。
教学目的:
1。理解相遇问题中速度、时间、路程这三个数量间的相依关系,以及相向而行、相遇等术语的含义。
2。能根据相遇问题的题意用线段图分析数量关系,并说出解题步骤。
3。能正确解答相遇问题中求路程的应用题。
4。在培养学生逻辑思维能力的同时注重培养学生的自我探究和创造精神。
教学重点:相遇问题中数量关系的理解和解题思路的分析。
电教媒体:微机及配套大屏幕、投影仪、投影片。
教学过程:
一、展示设疑
(一)前提诊测(投影片)
1。张华每分钟走65米,走了4分钟,一共走了多少米? (654=260米)
提问:为什么这样列式?谁会用一个数量关系式表示? (板书:速度时间=路程)
2。李诚每分钟走70米,走了4分钟, ? (由学生补充问题再列式计算)
[评析:旧知的再现,针对性强,抓住与新知密切相关的速度、时间、路程的数量关系,为学习新知识作了适
当的铺垫。]
(二)引人课题
我们以前学习的都是一个人或一个物体运动的情况,如果是两个人或两个物体同时相对运动将会出现什么情况呢?这就是我们今天要学习的应用题。(板书课题:应用题)
二、引导思疑
1。创设动态情境,准确理解题意。。
微机屏幕显示准备题:张华家距李诚家390米,两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。
师:请同学们看屏幕,张华、李诚是怎样走的?结果会怎样?
(微机演示)屏幕显示张华、李诚两家用太阳表示并不断闪烁,当发出一声悦耳的响声后,张华、李诚分别从两家同时出发,相对而行,经过3分钟后两人相遇,这时又发出一声悦耳的响声,张华走的路程用蓝色表示,李诚走过程的路程用红色表示,屏幕底色是浅黄色,色彩清晰艳丽。
学生观察后提问:有几个人在运动?出发时间怎样?从哪里出发?出发后方向怎样?结果怎样?
板书:人:两个 时间:同时 地点:两地
方向:相向(相对) 结果:相遇
[评析:运用微机所具有的声、光、色、形的特点,创设动态情境,抓住相遇问题的关键,加深学生对
两地、同时、相遇关键词的分析和领会,形象深刻地提示了事物的发展、变化与结果,使学生准确理相遇应用题的结构特点,充分发挥现代教育技术手段的功能优势,为后面的例题教学扫除了障碍。]
2. 观察、思考、分析、填表。
教师利用微机逐分逐分地演示两人走的时间与路程变化情况,让学生一边观察一边思考,完成下准备题中的表格。。
根据以上微机的`演示让学生填写下面他们两人走的时间和路程的变化情况表。
走的时间 张华走的路程 李诚走的路程 两人所走的路程的和 现在两人的距离
填完上表后让学生讨论:
①出发3分钟后,两人之间的距离变成了多少?
②两人所走的路程的和与两家的距离有什么关系?
[评析:素质教育重视学生的主体地位,重视挖掘学生的认知潜力,准备题的设计正是考虑了这一要求。通过微机演示让学生感知相遇问题的结构特点,然后通过列表、讨论、分析每经过1分、2分、3分两人之间的距离变化,从而准确理解到:相遇时两人所走的路程的和就是两家的距离这一重要的数量关系。这里充分运用电教媒体的优势,适时启发、点拔,给予学生方法上的指导,引导学生思维活动上路,从而为下面的例题提供丰富的信息与表象。]
三、引思解疑
l。出示例5:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分,两人在校门口相遇。他们两家相距多少米?
2.理解题意,画出线段图。
①让学生说说小强和小丽是怎样运动的?题中的已知条件和问题分别是什么?
②根据学生的回答,微机屏幕显示线段图(标出运动方向、有关数据及问题)。
③让学生根据线段图复述题意,同时想象两人同时从家里走向学校的过程。
(3)分析数量关系及解题方法。
问:怎样求两家的距离?
启发学生说出两种解法:
① 求两人各自的路程,再加起来。
644+704
②求每分两人所走的路程和,再求4分两人所走路程的和。
(65+70)4
4。比较两种算法。
让学生说说两种解法分别先求什么,再求什么?再引导学生观察两种解法的算式之间有什么联系?(为什么两种解法算式不同却结果相等?)(符合乘法分配律)
[评析:前面准备题已通过微机向学生提供了直观、多彩、形象、生动的表象,又通过填表、分析,学生已准确理解了相遇问题的数量关系,例5的解答已经是水到渠成。然而教师并不急于呈现答案,而是注重知识的获取过程。先启迪学生复述题意、想象两人同时相向而行的情景,再画出线段图,进一步激发学生解题的积极性与主动性,最后通过学生自身努力找到答案,化解难点,真正体现了启发式电化教学解决难点的媒体策略思想。整个例题的解答都是学生在教师的引导下充分运用前面提供的表象自我探究、自我发现,这样,有效地促进了学生把外部感知活动内化为内部的思维活动,从而形成合理的知识结构,使学生的认知水平发展到意义建构的较高层次。]
5。做一做(投影)①甲乙两人同时从两地面对面走来,经过6分钟两人相遇(如图),求两地间的路程。
每分60米 每分75米
a。相遇时甲行了多少米?()()=()米
b。756表示( )
c。两地间的路程:()()+()()=()米
另一种解法:
a。两人每分所走的路程的和是:()+()=()米
b。两地间的路程是[()+()]()=()米
②两车同时从两地相对开出,4小时相遇,一辆汽车每小时行48千米,另一辆汽车每小时行52千米,求两地之间相距多少千米?(两种方法解答)
四、拓思创新
1。甲乙两个工程队同时修筑一条公路,14天修完,甲队每天修280米,乙队每天修300米,这条路全长多少米?
2。甲乙两车同时从两地相对出发,甲车每小时行45千米,乙车每小时行50千米,6小时后两车还相距30千米,求两地之间相距多少千米?
[评析:练习的设计由浅入深,有坡度多层次,先表述相遇问题的解题思路,强化学生口头表达能力,促使知识内化,然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移,最后解决已知条件有变化的相遇问题,突破固定的思维框架,形成自己的认知结构。]
五年级数学上册教案2
教学目标:
1、使学生知道整数乘法的运算定律对于小数乘法同样适用,能运用乘法的运算定律正确地、合理地、灵活地进行小数乘法的简便计算。
2、培养学生的观察能力,类推能力和灵活运用所学知识解决问题的能力,培养学生的简算意识。
3、让学生相互交流、合作、体验成功的喜悦。激发学生感受美,发现美的情感。
教学重点:
1、理解整数乘法的运算定律在小数乘法中同样适用。
2、运用整数乘法的运算定律进行小数乘法的简便计算。
教学难点:
运用运算定律进行小数乘法的'简便计算。
教学准备:
课件、练习卡。
教法学法:
在教学思想上努力体现以学生为学习的主人,教师只是学习的组织者、引导者和合作者,让学生始终参与教学活动中。在教学方法上,采用游戏、直观演示、引导探究等教学方法,从扶到放,让学生在游戏、探索、练习过程中学会小数的简便计算。在教学设计上,注意重点内容的处理,使学生在主动获取知识的同时,提高学生的简算能力,培养学生灵活做题的技巧。在教学手段上,采用多媒体辅助教学增强了教学的效果。
教学过程:
一、谈话引入
师:同学们,通过上节课的学习,我们已经知道了整数混合运算顺序适用于小数,那么,除此以外,还有哪些适用于小数呢,这节课我们一起来探讨整数乘法运算定律适不适用于小数(教师板书课题)。
二、旧知巩固
师:上新课之前先来考考大家。看谁算得快。(学生完成练习卡上的第1.2题)学生汇报计算结果。
师:同学们算得真快,那老师再来考考大家,看谁算得巧。(学生完成练习卡上的第3题)学生汇报计算方法和结果。
三、游戏探知
师:谁来说说你们刚才完成的三道题分别是运用了什么运算定律来简便计算的呢?在整数乘法中我们学过了哪些运算定律、用定母表示。
师:同学们,你们会唱“找朋友”这首歌吗?
师:下面我们就来边唱这首歌边做“找朋友”的游戏,好不好?
同桌讨论,协作完成。计算下面各题,找出计算结果相同的式子用等号连接。
1.2 × 0.7 0.8×(0.5×0.4)2.4×0.5+3.6×0.5
(0.8×0.5)×0.4(2.4+3.6)×0.5 0.7×1.2
师:同学们,他们的好朋友都找对了吗?
师:(手指算式)这些算式各说明了什么呢?(学生观察后,纷纷举手)
师:说得太好了,谁能用一句话来概括一下这些算式说明什么?(整数乘法运算定律对于小数乘法同样适用)。
师:你们真聪明,又肯动脑子。刚才通过我们的探索,大家知道了整数乘法的运算定律对于小数乘法同样适用,但是究竟怎样,才能使计算简便呢?下面我们就来讨论几道题。
四、例题讲述
师:(板书)(1)0.25×4.78×4
师:请同学们认真地观察,看看这道题能不能用简便方便计算,怎样算简便,请试着用简便方法计算,并思考你是运用了什么运算定律。
(学生观察,思考,教师巡视,参与其中,共同研讨)。
让学生在班级汇报交流。
师:谁能说说这道题能不能简算?怎样简算?为什么?
师:(板书)(2)0.65×201
(学生再次观察,思考,并独立完成。教师巡视。)
师:同学们,刚才我们用乘法交换律和分配律对小数乘法进行了简便计算,大家都掌握得很不错,那接下来就请大家跟着老师一起去“过关斩将”,解决更多的难题。
五、课堂练习
(1)0.31×2.5 - 0.24先算()
A.加法B.减法C.乘法
(2)3.6×4.5+3.6×5.5可以运用()进行简算。
A.乘法交换律
B.乘法结合律
C.乘法分配律
(3)下面的计算对吗?把不对的改正过来。
50.4×1.9-1.8
=50.4×0.1
=5.04
(4)计算下面各题,能用简便方法算的用简便方法算。
1.5×102 1.25+4.6+0.75 4.8×0.25 2.33×0.5×4 2.5×0.5×0.4×2 0.8×7.5×1.25
(5)丽丽送给希望小学99名同学每人一套12.8元的文具。丽丽一共花了多少钱?
六、课堂小结
通过这节课的练习,我们已经明白了整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。
板书设计:
整数乘法的运算定律适用于小数
五年级数学上册教案3
一、创设情境,激发学习兴趣,引入复习主题
1、故事导入:
(今天老师给同学们带来了一个很精彩的故事,同学们愿意听听吗?)在听故事之前,老师有一个要求:听老师讲之后看你能从这个故事中发现什么规律?
师:从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说。从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说……
师:你从这个故事中发现了什么规律?(这个故事总是在依次不断地重复同一个内容。)
师:不错,大家已经发现这个故事的一个特点了。板书:依次不断地重复
师:谁能根据这个特点接着老师的故事继续往下讲?(让几个学生继续讲这个重复的故事。)
(引导学生讨论后回答:讲不完。)
师:如果老师让你们照这样不断重复地一直讲下去,不叫停止,想一想,你们要讲多少遍?(引导学生讨论后回答:循环、无限。)
生:要讲很多很多遍。
生:要讲无数遍。
师:像这样讲的遍数是“有限的”还是“无限的”?
生:是无限的。
师:你们刚才讲的遍数呢?
生:是有限的。
2、举实例,引入主题
(其实在日常生活中,也有许多类似的现象。)
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说?
(1)、一年四季春夏秋冬的循环。
(2)、白天与黑夜的循环。
(3)、周一至周日的循环。
(4)、1月到12月的循环。
(5)、钟表从1走到12的循环。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友——循环小数。(板书课题)这就是今天我们要学习的内容。下面,就让我们再次一起走进知识的海洋——循环小数。
二、用竖式计算下面各题。
0.75÷2.5= 28÷18=
78.6÷11= 1.5÷7=
1、个别演版
2、讲评,统计作对人数。问个别学生计算错在哪里?(目的:学生要养成认真计算的好习惯,做题是这样,做任何事情都是这样。)
3、观察你的计算过程和计算结果,你有什么想对同学和老师说的吗?(小组讨论,个别发言)
同学们说的真不错!接下来就请同学们用自己刚才的小发现来完成下面的判断题。
三、判断对错。(对的在括号里打√,错的在括号里打×)
(1)、一个小数,从某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。 ()
(2)、9.66666是循环小数。 ()
(3)、循环小数是无限小数,无限小数也是循环小数。 ()
(4)、循环小数8.3742742…也可以写成8.3742。 ()
(5)、7.80=7.8 ()
讲评:
(1)、强调重点字词。
(2)、是5位小数,是有限小数,不是循环小数。
(3)、前半句对,后半句不对,无限小数不但包含循环小数,还包含无限不循环小数。这句话如何说正确?在本册书的学习中,还有哪两个数学概念的关系也是这样的?
(4)、让学生明确循环小数有两种表示方法。一种是一般写法,一种是简便写法。
(5)、个别学生上台展示自己比大小的方法:先写成一般形式,再比大小。
你的方法真不错,那就让我们利用这位同学的方法完成下面的练习。
四、比大小
1、 0.33 0.3 1.23 1.233 1.45 1.45
2、从大到小排列
0.6 0.6 0.606 0.60… 0.06
(1)、学生独立完成。
(2)、个别演版,把自己比的方法展示出来。
(3)、统计做对的人数,个别说说自己的错因。
提醒学生注意:要看清题目要求是从大到小,还是从小到大。
要用“>”连起来。
比的结果里要写题目里给的原数。
五、全课小结
同学们,通过我们刚才的思、说和做,解决了许多问题,那就让我们来互相说说这一节课学习的感受吧!
生:我知道小数按照小数部分的`位数可以分为有限小数和无限小数,循环小数是无限小数的一种。
生:我知道循环小数就是数字在一个小数的小数部分有规律的无限的重复。
生:我们在写一个循环小数时,虽然在小数部分只写了几个数字,但是后面的省略号表示这是千军万马,浩浩荡荡的。
生:我感觉循环小数是一望无际的。
生:我觉得循环小数的简记的方法最神奇,小数部分头上的小圆点最神奇了,好象孙悟空头上的毫毛,拔下来立刻变成无数个数字
同学们的表述太精彩了!接下来,让我们放松一下:请欣赏美丽的图案。
师:这些图案都是利用循环小数这一现象设计出来的。你能利用今天学习循环小数的现象也设计一种好看的花边吗?
六、布置作业:
你能利用今天学习循环小数的现象设计一种花边?
五年级数学上册教案4
活动目的:
活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。书中包括:封面、序言、图片、习作、书画作品、摄影作品、荣誉等内容。成长报告册是记录学生成长的足迹,成果的积累,反思,回忆的重要工具。它既重过程,又重发展;既重引导,又重评价。激励学生积极、主动的参与的过程,促进自己不断的发展。
活动形式:
收集、实践、操作,整理
活动准备:
空白册一本,学生平日里的照片,证书,特色的作品。
活动过程:
1、明确要求:
向学生提出活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。
2、资料搜集:
①我们这本《成长的足迹》里面的需要一些文字内容和图片资料。文字包括自己的习作、日记、片段等。图片资料包括同学们的书画作品、摄影作品、你的生活照等。而这些作品可以是大家在小学中的'你最满意的作品,再邀请你的同学、师长帮你指点。
②把收集的所有作品集体挑选优秀作品自己编入《成长的足迹》之中。
3、分类整理:
对这本书的栏目的设置。可以设童年足迹、五彩的世界、我们的荣誉,我的作品等栏目。(童年:童年中的学习生活的照片;五彩的世界:书画摄影作品;我们的荣誉:大家过去所得到的荣誉。)
4、交流修改:
初稿出来以后相互交流欣赏,再请师长、家长等一起征求意见,以便把记录册建得更趋完美。
活动建议:
1、召开家长会,为每位家长和孩子介绍讲解报告册的作用及制作的须知。
2,由于学生的年龄小,必须得到家长的鼎力支持,争取家长的支持。
3、经常展示让学生之间互相学习,不断完善,在过程中不断补充,记录自己的足迹。
五年级数学上册教案5
教材分析
新课程标准对于方程这部分内容在本学段有以下几个具体目标:
1、在具体情境中会用字母表示数。
2、结合简单的实际情境,了解等量关系。
3、了解方程的作用,能用方程表示简单情境中的等量关系。
4、能解简单的方程。
在这一节前,学生已经认识了字母表示数的意义和作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。
这一课时是对前期知识进一步深化,担负着教学列方程和教学解方程的双重任务,是本单元的学习重点,也是教学难点。
“稍复杂的方程”这块内容分三个例题,例题1:ax-b=c及其应用;例题2:ax+bx=c及其应用;例题3:ax+bx=c及其应用。这节课要思考的主要是探究学习例题1:形如ax-b=c的方程及其应用,本节课作为学生初次接触“稍复杂的方程”的第一课时。
学情分析
学生已经认识了字母表示数的意义作用,初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。这一课时是对前期知识的进一步深化,是本单元的学习重点,也是教学难点。学生学习的困难之处是根据题目里的'已知信息列出等量关系。
教学目标
1、使学生能根据等式的基本性质解稍复杂的方程。初步学会列方程解决一些简单的实际问题。
2、培养学生抽象的概括能力,发展学生思维的灵活性。培养学生根据具体情况,灵活选择算法的意识和能力。
3、使学生感受数学与现实生活的联系,培养学生的数学应用意识与规范书写和自觉检验的习惯。
教学重点和难点
教学重点:学生自主探索列方程解决较复杂应用题的方法。
教学难点:正确寻找等量关系列方程。
五年级数学上册教案6
教学内容:教材P25例2、例3及练习六第5、7、8、12题。
教学目标:
知识与技能:使学生掌握被除数的整数部分不够除和除到被除数的小数末尾还有余数的两种特殊情况。
过程与方法:进一步掌握除数是整数的小数除法的计算方法,能正确、熟练地进行除数是整数的小数除法的计算。
情感、态度与价值观:引导学生通过整数除法的验算知识迁移到除数是整数的小数除法的验算,养成学生及时检验的好习惯。
教学重点:能正确计算除数是整数的小数除法。
教学难点:掌握除数是整数的小数除法的计算法则中的两种特殊情况。
教学方法:利用教材情境,结合学生例l的`知识经验,引导学生自主探究发现,归纳总结小数除以整数的结果。
教学准备:多媒体。
教学过程
温习旧知
1、 快乐口算。
4.2&;divide;3= 7.2&;divide;6= 2.8&;divide;2= 6.3&;divide;3=
16.8&;divide;8= 5.5&;divide;5= 4.8&;divide;4= 3.8&;divide;2=
2、笔算,并结合竖式说说你是怎样算的。
93.6&;divide;24= 117.5&;divide;25=
3、 不改变数的大小,把下面各数改写成三位小数。
2.4= 117= 5= 18=
我是根据( )把上面各数改写成三位小数的。
一.自主学习与合作探究
自学教材第25页的例2
(1)读题,理解题意并列式:( )
(2)观察竖式并想:按( )法则去除,余数是( ),表示余 ( )个1;在( )的后面添0,表示( )个十分之一后继续除,同时在( ) 和( )的后面点上小数点,余数是( ),表示 ( )个十分之一;再在( )后面添0,表示( )个百分之一后继续除。
28&;divide;16,再让学生用竖式计算。当学生计算完成第一步,被除数末尾有余数12时,提问:接下来怎么除呢?请同学们想一想,并在小组内交流。
引导学生说出:可以根据小数末尾添上或去掉O,小数的大小不变的性质,在12的后面添上O看成120个十分之一再除。
提问:计算时被除数的末尾有余数时该怎么办?在余数后面添O继续除的依据是什么?
引导学生理解:计算时被除数的末尾有余数时,在余数后面添O继续除。它的依据是小数末尾添上O小数的大小不变的性质。由于被除数28是整数,小数点没有写出来,因此要在商的右边点上小数点后,再写商。
追问:现在除完了吗?为什么?(因为还有余数,所以还没有除完。)
引导学生利用刚才总结的方法,将8的后面添上O看成80个百分之一,再除以16。
强调:师进一步明确:在计算除法时,如果除到被除数的末尾仍有余数,要在余数的后面添O继续除。使学生知道:小数除法除到最后没有余数了,叫做除尽了。
总结:通过例1和例2的学习,谁能说出除数是整数的小数除法的计算法则?
引导学生说一说,并出示:除数是整数的小数除法,按照整数除法法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添O继续除。
(3)尝试独立用竖式计算.
重点提示:商的小数点和被除数的小数点要对齐。
(4)练一练:
72&;divide;15= 29&;divide;4=
(5)交流、小结:小数除以整数,如果除到被除数的末位还有余数,要在( )
整数部分的后面点上( ),在余数后面添( ),继续除。
2、自学教材第25页的例3:
(1)独立分析,列出算式。( )
(2)想:先用5.6的整数部分5除以7,( ),要在被除数( )位数字5的上面商( ),对齐被除数的小数点点上商的小数点,再继续往下除,56个十分之一除以7等于( )个十分之一,在商的十分位上写( ).
提问:观察这道算式与学习的例l、例2有什么不同?
(被除数的整数部分比除数小)
提问:被除数的整数部分比除数小,商会出现什么情况?(不够商1)
追问:不够商1怎么办?
引导学生自主探究知识,并总结:被除数的整数部分比除数小,不够商1,就应该在被除数的个位上面,也就是商的个位上写0,用O来占位。
引导:现在把被除数的整数部分和十分位上的数合起来看作56个十分之一,再除以7够不够除?商应该写在哪里?
引导学生明白商应该写在商的十分位上,教师板演,完成算式(见图3):
验算。这道题怎样验算呢?想一想整数除法是怎样验算的?能不能把这种验算方法应用到小数除法上来?学生独自试一试,再小组交流讨论。
集体汇报:用乘法验算,即0.8&;times;7=5.6。
我发现:小数除以整数,如果小数的整数部分不够除,在个位上商( ),点上商的( )后继续除.
3、口头整理一下小数除以整数的计算方法。
三、巩固拓展
1.完成教材第25页&;“做一做&;”第(1)题。并说一说当除到被除数的末尾还有余数时,怎么办?(添O继续除)
2.完成教材第25页&;“做一做&;”第(2)题。通过观察算式及结果,引导学生得出:只要被除数比除数小,个位上就不够商1,这样的除法得到的商都比1小。
3.完成教材第25页&;“做一做&;”第(3)题。学生独立完成,集体订正。
4.完成教材第27页练习六第12题。独立完成,集体订正。
四、课堂小结
1.师:这节课我们学了什么知识?有什么收获?
引导归纳:
(1)整数部分不够除,商O点上小数点继续往下除。
(2)除到被除数的末位仍然有余数,要在后面添O继续除。
2.师:谁能完整地总结一下除数是整数的小数除法应该怎样计算?
引导归纳:除数是整数的小数除法,按照整数除法法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0继续除;如果整数部分不够除,商0点上小数点继续往下除。
布置作业:
板书设计:
五年级数学上册教案7
教学目标:
1、结合具体实例,在观察、讨论、操作的活动中,经历认识简单图形旋转的过程。
2、了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。
3、在探索图形旋转并用语言描述的过程中,进一步发展空间观念。
教学重难点:
了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。
课前修改:
教学过程:
一、旋转方向
1、观察喷洒的情境图,说一说看到了什么旋转现象,是怎样旋转的。教师结合钟表上表针的转动介绍顺时针、逆时针转动。
2、拿一把转椅,按不同方向实际转一转,让学生描述旋转方向。
二、旋转90°
1、教师简笔画分步演示喷头顺时针旋转90°的画面,让学生认识并描述旋转了多少度。
2、再次旋转转椅,分别从顺时针、逆时针方向旋转90°,让学生用语言描述转椅是沿怎样的方向旋转的,旋转了多少度。
说一说
1、观察书中的两组图形,了解书中有什么。教师提出“说一说”的问题,给学生独立思考的、判断的时间。
2、交流,重点让学生说一说是怎样判断的,给学生充分表达的机会。
三、图形旋转
1、提出画图的要求,并提示画图时要先确定旋转方向,再考虑旋转90°后的位置。
2、展示画出的.图形,交流画的方法。教师介绍先确定两条直角边旋转后的位置,最后连另一条边的方法。
3、让学生看书中画的三角形旋转90°后的图形。
练一练
1、弄清题目要求后,再判断。
2、学生在书中独立完成,教师辅导后进。
3、先引导学生了解图的特点,鼓励学生自己设计图案。
教后反思:
五年级数学上册教案8
教学目标:
1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。
教学重点:掌握用“四舍五入法”求一个小数的近似数。
教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。
教学过程:
一、复习旧知,情境导入。
1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!
2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。
先写黑板:12953≈1万
3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)
师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。
师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)
4.师:刚才我们求的.是整数的近似数,你能说出求整数的近似数的方法吗?
学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!
二、整合情景,探究交流。
1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)
这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?
保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。
谁再来说一遍?(2-3名同学。表扬。)
2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?
(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。
3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。
4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)
5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)
不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。
求得的近似数1.0和1比较,哪一个更精确一些,为什么?
幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。
三、练习。(智力闯关。)
同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。
1.第一关。保留一位小数。
0.58≈0.63.788≈3.8
精确到百分位。精确到百分位就是保留几位小数?
12.004≈12.001.987≈1.99
保留整数。
9.956≈109.0448≈9
2.第二关。在□里填数。
2.9□≈2.98.5□7≈8.56
3.第三关。
姚明的身高约为2.2米,姚明的身高可能是多少米?
2.15(6、7、8、9)2.155……
2.20(1、2、3、4)2.……
四、全课。
你今天有哪些收获?保留一位小数,就是精确到十分位,……
板书设计
求小数的近似数
12953≈1万0.984≈0.98保留两位小数,看千分位。
小于5,舍去。小于5,舍去
0.984≈1.0保留一位小数,看百分位。
0.984≈1保留整数,看十分位。
大于5,向前一位进1。
五年级数学上册教案9
第1单元小数乘法
第11课时整理和复习
【教学内容】:教材第1单元。
【教学目标】:
知识与技能:通过复习,进一步掌握小数乘法的意义,算理、计算法则以及灵活取积的近似值,通过整理使知识系统化、条理化。
过程与方法:培养学生的归纳、整理能力,提高计算的熟练程度。
情感、态度与价值观:培养学生认真计算的好习惯。
【教学重、难点】
重点:对各知识点的整理与复习。
难点:如何有序整理知识。
【教学方法】:讲练结合,小组交流。
【教学准备】:多媒体。
【教学过程】
一、谈话导入
师:同学们,我们已经学习了小数乘法的有关知识了,这节课我们把所学的内容回顾复习一下。希望同学们在这节课中有更进一步的提高。(板书:小数乘法的整理与复习)
二、练习沟通
1.出示练习。
①0.72×5
②6.5×8.4
③2.9×0.07
④2.5×6
⑤1.2×199
⑥0.8×0.9(得数保留一位小数)
⑦203×5.5
⑧3.7×4.6
把上面的算式进行分类。
小数乘整数:① ④ ⑤ ⑦小数乘小数:② ③ ⑥ ⑧
2.复习小数乘整数。
(1)0.72×5这道题等于多少,你是怎么想的?(复习计算方法)
(2)再出示1.2×199,这道题等于多少,你是怎么想的?(学生可能会有两种做法,方法一,按照小数乘整数的计算方法来做。方法二,运用整数的乘法运算定律来做。重点引导学生用整数乘法的运算定律来做。)
师:谁来当小老师,给大家讲讲这题怎样用简便方法计算?
1.2×199,口述:先把199变为200—1,然后利用乘法分配律进行计算。(根据学生的回答,教师板书。)
让学生试做203 ×5.5,说一说怎样运用简便方法?
总结:运用乘法的运算定律进行简便计算的时候,先观察数字的特点。
3、复习小数乘小数
(1)独立完成笔算。指名板书。
(2)指名讲算法。
出示:0.8×0.9这道题等于多少,你是怎么想的?(复习计算方法)
怎样用“四舍五入法”保留一位小数?
师:谁来当小老师,给大家讲讲这题是怎样算的?计算时要注意什么?
0.8×0.9,口述:计算小数乘小数时,因数0.9要与上面0.8对齐,先按照整数乘法来做,然后再确定积的小数点位置。乘号写在数的左侧,等号线用尺子画。
2.9×0.07:出示两位小数乘三位小数,并不是小数点和小数点对齐,而是末位和末位对齐,然后按照小数乘法的计算方法来做。
师总结:小数乘法的计算方法,先按照整数乘法来做,然后再确定积中的小数点位置。
三、典例分析
1.用竖式计算下列各题。
0.36×0.04=0.12×0.5=
指名板演,集体订正。
【易错点剖析】在给乘积点小数点时,因数中一共有几位小数就从积的右边起数出几位,点上小数点。这时会有两种情况出现:一种是积的小数位数不够时,要在前面用O补足再点小数点;另一种是积的末尾有O时,点上小数点后末尾的O可以去掉。
【归纳点评】通过两道小数乘小数的竖式计算题,让学生熟练掌握小数乘小数的计算方法,并熟记因数和积的小数位数之间的关系,从而牢固掌握小数乘小数的计算方法。
2.下面各题的计算结果对吗?说一说你是怎么判断的,并改正。
2.7×1.8=48.6 25×0.6=26
第一个计算结果是错误的`,因为两个因数中共有两位小数,而积里面只有一位小数,所以是错误的;第二个计算结果也是错误的,因为0.6比1小,所以相乘的积应该比第一个因数小,而26比25大,所以是错误的。
改正:2.7×1.8=4.86 25×0.6=15
【易错点剖析】在检验小数乘法的积是否正确时,有多种验算方法,也就是说验算方法不唯一性,不管选哪种方法都是正确的。
3.选一选:34.99×0.2的积保留两位小数约是( )。
A.7 B.7.00 C.6.99
【易错点剖析】34.99×0.2=6. 998,6.998保留两位小数约是7.00,这里的“O”不能去掉,因为“0”在这里起到了占位的作用。
【归纳点评】在求积的近似数时,要求保留几位小数就要保留几位小数,如果数位上的数满十向前一位进位,也要用“O”来占位。
4.为了节约用电,某小区规定每户居民每月用电量在50度以内,每度按0.52元收费,超过50度部分为每度0.62元,刘老师家本月用电量为95度,请你帮老师算一算应缴纳多少元电费?50×0.52+45×0.62=53.9(元)
【易错点剖析】这类收费问题对于学生来说比较难,收费分:50度以内的部分和超过50度的部分。学生在做题时往往容易把这两部分混淆。
四、拓展提高
乘法分配律的灵活运用
师:你能用简便方法来计算这两道题吗?
0.65×1.3+0.65×1.7 0.25×9+0.25
小组讨论、计算、汇报。
学生汇报后,引导学生说一说为什么简便,运用了什么运算定律。
生1:0.65×1.3+0.65×1.7=0.65×(1.3+1.7)=0.65×3=1.95
生2:0.25×9+0.25=0.25×(9+1)=0.25×10=2.5
生3:我有个小窍门帮助同学们记忆乘法分配律。例如
0.65 × 1.3+0.65 × 1.7 = 0.65 × ( 1.3+1.7)
我爱爸爸和我爱妈妈缩为我爱爸爸和妈妈
师:很好,用语文课上常用的缩写句子来记乘法分配律,真是奇思妙想。
五、小结质疑
师:刚才同学们表现得真不错,谁再来说说刚才我们都复习了哪些内容?在计算小数乘法时要注意什么?哪些地方是最容易错的,你想提醒同学们注意哪些地方?
六、作业:1.用竖式计算
0.76×0.32 1.08×25 0.25×0.046(保留两位小数)
2.脱式计算(能简算的要简算)
(1.25-0.125)×8 56.5×99+56.5 4.8×100.1
【板书设计】
整理和复习
0.65 × 1.3+0.65 × 1.7 = 0.65 × ( 1.3+1.7)
我爱爸爸和我爱妈妈缩为我爱爸爸和妈妈
五年级数学上册教案10
【教学内容】:
教材P54例3及练习十二第4、5、6、10题。
【教学目标】:
知识与技能:使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式。理解一个数的平方的含义。
过程与方法:使学生能够用语言表达运算定律和字母公式,能够将数字代入字母公式中进行计算,培养学生的抽象概括能力。
情感、态度与价值观:向学生渗透用字母表示运算定律和公式的简单美。
【教学重、难点】
重点:能用字母表示运算定律和公式,并能根据字母公式求值。
难点:理解一个数的平方的含义。
【教学方法】:
自主探索、合作交流、尝试学习法。
【教学准备】:
多媒体。
【教学过程】
一、复习导入
1.引导学生回忆:我们已经学过哪些运算定律?并让学生分别用语言叙述一下对应运算定律的具体内容。
2.通过学生的回答,教师进行整理。学过的运算定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。
3.根据学生的回答出示如下表格:
加法交换律两个数相加,交换加数的位置,它们的和不变。
加法结合律三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
乘法交换律两个数相乘,交换因数的位置,它们的积不变。
乘法结合律三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
乘法分配律两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
4.师引导思考:在叙述时有什么感受?
(比较麻烦,有时表达不清楚。)
结合学过的知识想一想怎样能变简单些?
学生会想到用字母表示数。
5.揭题:那么今天我们就来继续研究用字母表示数的相关知识。
二、互动新授
(一)教学用字母表示运算定律。
1.你能像上节课那样,用字母把这些运算定律表示出来吗?(出示运算定律表格)
为了教学统一,可以规定学生用字母a、b、c来表示数字。
先自主思考,再尝试表示。将答案写在教材第54页的表上。集体订正。
出示根据学生的'回答完成的表格:
加法交换律a+b=b+a
加法结合律(a+b)+c=a+(b+c)
乘法交换律ab=ba
乘法结合律(a×b)×c=a×(b×c)
乘法分配律(a+b)×c=a×c+b×c
2.引导学生自主学习乘号的简写。
先让学生自己看教材学习,再进行交流汇报。
明确:在含有字母的式子里,字母中间的乘号可以记作“· “,也可以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。
3.引导观察比较:用文字叙述和用字母表示运算定律有什么不同?
先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。
质疑:这里的a、b、c可以表示哪些数?
通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。
(二)教学用字母表示计算公式。
1.出示正方形的形状,问:这是什么?(正方形)
让学生先说一说正方形的面积及周长的计算公式:面积=边长×边长,周长=边长×4。
引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用C表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。
让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。
S= a2 C=4a
2.提问:你有什么疑问?(学生可能对平方的表示不理解)
明确:S=a·a可以写成a2,表示2个a相乘,读作”a的平方“,所以正方形的面积公式一般写成S= a2。
出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。
(32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)
出示:边长6厘米的正方形,你能计算出这个正方形的面积和周长吗?
引导学生先说出用字母表示的计算公式,再计算:
正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。
正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。
三、巩固拓展
1.完成教材第56页”练习十二“第4题。
先让学生分析信息,说一说”今天卖出多少个足球“怎么表示?(48+m)
再让学生独立计算第(2)、(3)小题,集体订正。
2.完成教材第56页”练习十二“第6题。
此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分”平方“与”2倍“:a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。
四、课堂小结
师:这节课你学会了什么知识?有哪些收获?
引导归纳:
1.用字母表示运算定律,简明易记、便于应用。
2.在含有字母的式子里,字母中间的乘号可以记作”· “,也可以省略不写。
3.a2读作:a的平方,表示2个n相乘。
五、作业:教材第56~57页练习十二第5第10题。
【板书设计】:
用字母表示运算定律和计算公式
a×b=b×a,可以写成a·b=b·n或ab=ba。
a2读作:a的平方,表示2个a相乘。
五年级数学上册教案11
教材分析:
这是人教版教材五年级上册《用字母表示数》的第一课时。用字母表示数,对小学生来说比较抽象,在学生的思维过程中,由具体的数和用运算符号组成的式子过渡到用字母和含有字母的式子表示数,是从个别上升到一般的抽象化过程。学生在近四年的学习中大量接触到的是有关具体的数的认识和运算,对字母表示数虽有一些生活经验和接触,但对字母表示数的意义并不理解。基于学生已有的学习生活经验,我们力图让学生经历数学化的过程,形成数学模型,从而体验到数学学习的乐趣。
《用字母表示数》是学生学习方程及进入中学学习代数的基础,它不但对后面的数学学习有着重要意义,而且在生活和实际中有着广泛的应用。这一课的教学中渗透着“转化”思想,遵循主体性原则,通过教学引导学生进行观察、比较和分析的,概括出用字母表示数的规律。然后教学运用这个规律表示常见的数量关系。
学情分析:
《用字母表示数》是学习代数知识的重要内容,看似浅显、平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃。对我们五年级孩子来说,本课内容较为抽象与枯燥。本课是第一课时,主要目标是让学生能用含有字母的式子表示简单的数量关系或计算公式,学会求简单的含有字母的式子的值,初步体会用字母表示数的简洁与便利。
教学设计:
教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题
教学目的:
知识与技能目标:
1、初步认识用字母表示数的意义,并能用字母表示简单的运算定律和计算公式。
2、使学生掌握含有字母的乘法算式的简便写法及平方的意义及读写法,会根据计算公式用代入法求值。
过程与方法目标:在具体情境中经历用字母表示数的过程,培养学生的抽象概括能力,发展学生的数感 与符号化思想。
情感与态度目标:让学生在自主探索、合作交流中获得成功体验,培养学生的团结协作精神。
教学重点:理解用字母表示数的意义和作用
教学难点:能正确进行乘号的简写,略写。
教学过程:
一、创设情景,激趣导学。
1、出示图片。视频1
师:这些图片相信大家都认识吧,那么它们分别表示什么呢?
生:KFC表示肯德基, CCTV表示中央电视台 , NBA表示美国职业篮球联盟。
2、出示扑克牌:J Q K 视频2
师:这些字母分别表示什么?
3、师小结:字母可以用来表示地名、方向,还可以表示数。今天我们就来学习一下“用字母表示数”,并板书课题。
(设计意图:联系生活,体会字母在生活中的广泛应用,在于激活学生的思维,实现学生生活经验与学习内容的和谐统一。)
二、探索新知
1.教学例题1
活动一:探究规律(观察下面每行图中的数,按规律排列填写) 视频3
活动二:百宝箱——解密码 视频4
师:同学们想打开百宝箱,必须知道百宝箱的密码,它是由以下横线中的三个数字组成,请你猜一猜。
师:请同学们独立思考,尝试找出规律,在算出图形或字母表示的数。
生尝试思考,并完成老师的提问。
师:你是怎么算的?为什么? 指名回答问题。(师适当鼓励。以提高学生的积极性。)
师小结:通过刚才的观察思考,我们发现可以用符号和字母表示具体的数。在数学中,我们经常用字母来表示数。
(设计思路:用字母表示数意味着将把学生从数的领域引入到代数的世界,这将促使学生的数学知识结构和数学观念、方法产生质的飞跃。)
2.教学例题2。
师:既然同学们这么棒,那哪位同学能记得我们学过的运算定律呢?(生语言描述。)
加法交换律为例,
师:若是我用字母a b 表示这两个数,那你们能否帮我把加法交换律表示出来呢?
生:a+b=b+a
师:其他的运算定律用字母该如何表示呢?
同桌间议一议,尝试用字母表示其他的运算定律。然后指名汇报,集体评议。视频5
运算定律名称 文字叙述(口述) 用字母表示 简写
师:这么聪明,可你们知道乘号还有其他的表示方法吗?比如说乘法交换律还可以怎么表示呢?
生:用圆点“ ”表示乘号。乘法交换律:ab=ba 。
师:既然这样,老师有一项艰巨的任务要交给你们,猜想:在这些字母表示的运算定律中,哪个运算符号可以省略不写呢?
生:乘号。
师:例如乘法交换律就可以怎么写呢?
生:ab=ba 师提醒:这个读作,a乘以b等于b乘以a 。
师追问:那种结合可以省略乘号不写呢?
生:字母与字母,数字与字母。
师小结:刚才我们学习了用字母表示数,表示运算定律,其实我们还可以用字母表示公式。
师:看到这些定律,你们对于字母和文字表述的运算定律有什么感觉?
生:用字母表示运算定律,简明易记,便于应用。
师板书优势:简明易记,便于应用。
(设计意图:使学生感受到数学的符号语言比文字语言更为简洁明了,体现用字母表示数的概括性、简洁性。通过积累、体验和认识,不断提高学生的学习兴趣和理解所学知识的能力。)
3.教学例题3:视频6
出示正方形问:我们学过正方形的什么内容?生:正方形的面积和周长。
师:那么这个正方形的边长是多少呢? 生:边长为a 。
师:通常情况下,用字母S表示面积,那你能用字母表示出这个正方形的面积吗?
生尝试写,然后师指名汇报,S=aa
师:你们看看这个等式有什么特点,你发现了什么?
生:两个相同的字母。
师:S=aa 这样,两个相同字母或两个相同的数【0除外】相乘时,还有一种更简便的写法,你们想知道吗? 生:想。
师:S=aa 中,aa =a2 读作:a的平方,表示2个a相乘。
所以正方形的面积还可以写作:S=a2 。
师:如果a为2,那么面积可以怎么表示? 生……(指名举例说明。)
师:同学们真的太棒了,如果用字母C表示周长,那么你能用字母表示这个正方形的周长吗?
生尝试写,然后指名汇报, C=a×4 。
师:a×4 能不能用刚才学的知识,以更简便的方式来表示呢?
生:a4 、4a 。
师指出:省略乘号时,一般数字要写在字母的前面,所以C=4a 。
师:刚才我们学了用字母表示正方形的面积和周长,那么你们又没有信心利用公式来进行具体的计算? (指名板演,其他学生独立练习,然后集体评议。)
(设计意图:初步学会用含有字母的式子表示数量的方法;促进学生体会用字母和含有字母式子表示数的意义及优越性。同时也使学生学会用字母和式子表示乘法数量关系,以及含有字母的乘法式子的简写。从而自然的促进学生由算术思维到代数思维的过渡。)
三、应用新知,拓展提高
活动(一):续儿歌。视频7
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
……
( )只青蛙( )张嘴,
( )只眼睛( )条腿。
小组交流:你能用一句话说一说这首儿歌吗?
师:26个英文字母都可以用来表示数,但由于英文字母“O”在书写形式上非常接近阿拉伯数字“0”,所以在用字母表示数时,通常不选择英文字母“O”。
活动(二):一段有趣的话。 视频8
小明和妈妈乘公交车去商场购物,车上原有30人,汽车靠站时,下去X人,又上来Y人;汽车继续行驶,小明和妈妈来到商场,一双袜子8元钱,妈妈买了a双,小明买了m米彩带,回家做手工时把它平均剪成6段。
小组讨论:根据这段话可以提出哪些数学问题?怎样解答?
(设计意图:设计有价值的讨论题,让学生有话想说,使学生在自主探究的空间中达到对本节课所学知识的应用与巩固。 )
四、总结:今天你学到什么知识,你体会到什么?视频9
(让学生自由畅谈)
教学反思
用字母表示数这一内容,看似浅显、平淡,但它是由具体的`数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃。其整个教学过程实质上是从个别到一般的抽象化过程。因此,在设计过程中应以建构主义为理论依据构建信息环境下“主体参与”教学模式,立足于学生的知识基础和认知水平,采用多样性的教学方式,让学生逐步理解用字母表示数的意义,并使学生在获取知识的同时,抽象思维能力得到提高,成为学习的真正主人。上完这节课后,我有以下几点体会:
一、取材于实际生活,关注学生巳有的认知水平和生活经验。
课程标准指出:“数学教学活动须建立在学生的认知水平和已有的知识经验基础上,这就要求教师在教学中应关注学生、找准认知起点,使教学有的放矢地进行,从而最大限制地落实“以人为本”的教学理念,老师的导入设计建立在本班学生已有知识和生活经验基础上,选择了KFC肯德基, CCTV中央电视台 , NBA美国职业篮球联盟及扑克牌上的字母,让学生感觉字母在生活中的广泛应用。同时,教师能创造性的使用教材,根据学生的特点设计教法,例1让学生发现规律,学习可以用字母或符号表示一个数;例2、例3让学生小组交流合作学习以及自学课本独立完成形式,符合学生的认知水平。
二、关注学生反思、内化的习惯
反思、内化与提升是引领学生经历探究过程的核心,本节课有三处环节设计体现了这一特点。
1、体现字母表示数的优越性环节,教师不是灌输,而是让学生小组交流选择表示运算定律的方法,在交流中感情字母表示比文字表述简明、易记。
2、省略字母之间的乘号,教师让学生在自学中内化、运用再进行反思,强调“”代替“×”,不代替“+”、“-”、“÷”。
3、教师充分相信学生的能力,让学生自学课本给学生自主尝试探索问题,使学生真正成为学习的主人,高年级教学注意培养学生一定的自学能力,也是新课标倡导的。
三、练习设计由浅入深,照顾到不同层次的学生。
课堂练习是学生对学习内容的重复接触或重复反应,课堂练习能及时反馈不同层次学生所掌握知识的情况,能反映一堂课的教学效果,又能对学生的学习起到巩固、发展、深化知识的作用,同时又起到一种激励效应,通过课堂练习使三个层次的学生都有所获,有所悟,并体验到成功和快乐。我在上完本节课后,紧接着出示了练习题,它们的难易程度由浅入深,紧扣本节课的重难点。通过这些练习,使学生进一步掌握了本节课的知识并且提高了灵活运用知识的能力。
四、今后努力的方向
在学过的平面图形中,同学们很容易用字母和文字表示比用已学过的长方形的面积和周长、正方形的周长。但在强调正方的面积用字母表示的同时,个别同学还是不能准确把握a的平方与2a区别。针对这一点虽然在课堂上及时作了的处理,但是为了避免这一错误的再次延续需作进一步的强调。教师的过渡性语言和总结性语言略显简单。对学生的回答做出的评价同样也有得有失。更好地设计问题,更科学地评价学生还是我需要继续学习和探索的重要内容。
五年级数学上册教案12
第5单元简易方程
第11课时练习课
【教学内容】:教材P70~72练习十五第3~5、10~12、14*题。
【教学目标】:
知识与技能:巩固解方程的方法,规范解方程的格式和写法,进一步提高学生分析、迁移的能力。
过程与方法:经历解方程的过程,熟练掌握解方程的方法。
情感、态度与价值观:在学习活动中,激发学生的学习兴趣,体验学习的成功和快乐。
【教学重、难点】
重点:掌握解方程的.方法和书写格式。
难点:灵活运用知识解决问题。
【教学方法】:引导回顾,练习讲解。讨论交流,练习巩固。
【教学准备】:多媒体。
【教学过程】
一、复习铺垫,迁移导入
教师:我们已经学过这么多关于解方程的知识,今天我们就通过练习来巩固一下。
出示:
1.判断下面各式哪些是方程。
a+24=73 4x =36+17 23÷a>43
x +84 3x +4y=8 48÷a=9
2.后面括号中哪个x的值是方程的解?
(1)x+42—98(x =57,x =135)(2)5.2—x =0.7(x =4.5,x =8.8)
(3)4x—7=21(x =7,x =8)(4)5(x —l)=25(x =4,x =6)
二、指导练习
1.教材第70页练习十五第3题。
(1)出示教材第70页练习十五第3题。
(2)教师提问:你们能从题目中得到什么信息?
(3)学生总结题目中所给的信息,然后独立列出算式,再进行小组讨论,将自己的答案与小组中其他的成员核对,改正错误的答案。
2.教材第72页练习十五第11题。
(1)出示教材第72页练习十五第11题。
(2)教师分析:由题可知,第一个图是一个长方形,已知宽和周长,求长是多少。这个题就要借助我们之前学习的长方形的周长公式进行计算。
(3)指名学生列式并求解:2(5+x)=36,解得x =13。
(4)从第二个图中你能得到哪些信息?
第二个图中所给出的信息是儿童的人数是成人人数的3倍,而儿童和成人的总人数是80人。
(5)学生独立思考,指名板演,集体订正。
三、巩固拓展
1.巧设相邻的自然数
出示题目上:三人相邻的自然数的和是57,这三个自然数分别是多少?
学生阅读题目,理解题意。
思路导引:
⑴任意写出三个连续的自然数,观察特点。
⑵设其中一个为x,用含有x的式子表示其他两个自然数。
⑶根据题意列出方程。
学生尝试解答,教师根据学生汇报板书规范解答。
解:设中间的自然数是x 。
(x—1)+x(x+1)=57
3x =57
3x÷3=57÷3
x=19
前一个自然数是:x—1=19-1=18
后一个自然数是:x+1=19+1=20
教师小结:对于“已知三个连续自然数的和,求这三个连续自然数”的问题,一般设中间的自然数为x,刚其余两个自然数分别为x+1他x—1。
2.列方程解答。
⑴一个数减去43,差是28,求这个数。
⑵一个数与5的积是125,求这个数。
⑶x的3.3倍加上1.2与4的积,和是11.4,求x。
3.完成教材第70页练习十五第4、5题。
组织学生独立完成,全班集体订正。
4.完成教材第71页练习十五第10题。
指名学生板演,其余学生独立完成,然后集体订正。
5.完成教材第72页练习十五第14*题。
(1)小组内合作讨论完成,组员之间相互说说解题的方法。
(2)教师指名学生汇报,根据学生的汇报教师强调:可以把“x=5”代入题中,把“□”看成未知数再求解。
四、课后小结
通过这节练习课,大家对解方程还有什么疑问?
五、作业:教材第72页练习十五第12题。
【板书设计】
练习课
第11题:2(5+x)=36 x+3x =80
拓展题:解:设中间的自然数是x。
(x—1)+x+(x+1)=57
3x =57
3x ÷3 =57÷3
x =19
前一个自然数是:x—1=19-1=18
后一个自然数是:x+1=19+1=20
五年级数学上册教案13
教学内容:教材P54例3及练习十二第4、5、6、10题。
教学目标:
知识与技能:使学生在旧知识的基础上,进一步认识用字母 表示运算定律和计算公式。理解一个数的平方的 含义。
过程与方法:使学生能够用语言表达运算定律和字母公式, 能够将数字代入字母公式中进行计算,培养学生的抽 象概括能力。
情感、态度与价值观:向学生渗透字母表示运算定律和公式的简单美。
教学重点:能用字母表示运算定律和公式,并能根据字母公式求值。
教学难点:理解一个数的平方的含义。
教学方法:自主探索、合作交流、尝试学习法。
教学准备:多媒体。
教学过程
一、自主学习
1、回忆学过哪些运算定律,怎样用字母表示,阅读理解例3(1)完成下面的空。
加法交换律:
加法结合律:
乘法交换律:
乘法结合律:
乘法分配律:
2、阅读理解例3(2),用字母表示计算公式的意义和方法。
用S表示______,C表示______,a表示边长,试写出正方形的面积公式__________________周长公式__________________。
用S表示______,C表示______,a表示长方形的长,b表示长方形的宽,试写出长方形的面积公式__________________周长公式__________________。
3、师引导思考:在叙述时有什么感受?
(比较麻烦,有时表达不清楚。)
结合学过的知识想一想怎样能变简单些?
学生会想到用字母表示数。
5.揭题:那么今天我们就来继续研究用字母表示数的相关知识。
二、互动新授
(一)教学用字母表示运算定律。
1.引导学生自主学习乘号的简写。
先让学生自己看教材学习,再进行交流汇报。
明确:在含有字母的式子里,字母中间的乘号可以记作“· “,也可以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。
2.引导观察比较:用文字叙述和用字母表示运算定律有什么不同?
先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。
质疑:这里的a、b、c可以表示哪些数?
通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。
(二)教学用字母表示计算公式。
1.出示正方形的形状,问:这是什么?(正方形)
让学生先说一说正方形的面积及周长的计算公式:面积=长×边长;周长=长×4。
引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用c表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。
让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。
S= a2 C=4a
2.提问:你有什么疑问?(学生可能对平方的表示不理解)
明确:S=a·a可以写成a2,表示2个a相乘,读作”a的平方“,所以正方形的面积公式一般写成S= a2。
出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。
(32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)
出示:边长6厘米的正方形,你能计算出这个正方形的`面积和周长吗?
引导学生先说出用字母表示的计算公式,再计算:正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。
正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。
三、巩固拓展
1.完成教材第56页”练习十二“第4题。
先让学生分析信息,说一说”今天卖出多少个足球“怎么表示?(48+m)
再让学生独立计算第(2)、(3)小题,集体订正。
2.完成教材第56页”练习十二“第6题。
此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分”平方“与”2倍“:a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。
四、课堂小结
师:这节课你学会了什么知识?有哪些收获?
引导归纳:
1.用字母表示运算定律,简明易记、便于应用。
2.在含有字母的式子里,字母中间的乘号可以记作”· “,也可以省略不写。
3.a2读作:a的平方,表示2个n相乘。
4.教材第56~57页练习十二第5题、第10题,生独立完成,集体反馈。
布置作业:
板书设计:
用字母表示运算定律和计算公式
a×b=b×a,可以写成a·b=b·n或ab=ba。
a2读作:a的平方,表示2个a相乘。
五年级数学上册教案14
第一课时
教学目标
1、让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的位置。
2、使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
3、渗透“数形结合”的思想,发展学生的空间观念。
教学重点:经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点:灵活运用数对知识解决实际问题。
教学过程:
一、创设情境,生成问题
谈话:今天老师和同学们一起走进军营,参观战士们的军营生活,高兴吗?(播放:走进军营,出示情境图)看,战士们正在进行队列训练呢,这一位是班长小强。
.你能提出什么问题?引出问题:小强在什么位置?(指名学生回答)
.问:为什么同一个人的位置,同学们的说法不一样呢?
.结合学生回答情况进行小结:刚才同学们在描述小强的位置时,有的横着看,有的竖着数,有的……由于看法和角度不同,产生了不同的说法,数学是交流的工具啊!标准不一样给我们的交流带来不方便,你想不想探讨一些简单又统一的方法来确定位置?这节课我们就来研究——确定位置(板书课题)
二、探索交流,解决问题
(一)、在情境图中确定位置
1.认识行与列
谈话(同步演示):平时我们所说的“竖排”,通常叫做“列”,习惯上我们从观察者的左边数第1列、第2列……,平时我们所说的“横排”,叫做“行”,通常从前往后数,第1行、第2行……。
问:现在你能用第几列第几行来说说张亮的位置吗?(演示)王艳和赵雪的位置怎么说?想好了,说给同位听。
指名同学说小亮和小明的位置,教师板书
2.认识数对
谈话:刚才这位同学很快说出了小亮和小明的位置,老师写的速度却很慢,什么原因?
数学的一大特点是简练,大家能不能想个更简单的方法来确定位置,记起来简单,还能让别人一看就知道是第几列第几行?现在以小强的位置为例在本子上写一写,试一试吧。
学生独立思考并写出想法,然后小组交流。
全班交流。引导学生对全班交流的意见进行梳理小结:这些同学都用数和符号简洁的表现出了小强的位置,真了不起!
介绍数对的写法:数学家也是用2个数来表示一个地点或者人的位置,如:第3列第2行,先写3,中间用逗号隔开,再写2,外面再加一个小括号。象这样的一对数,就是数对(板书),读作:三二。前边的3 表示第三列,后面的2表示第2行。用数对可以准确而简练地表示出物体的位置。
请你用数对表示小亮和小明的位置,写下来。(2名学生板演)
3.抽象圆点图,加深对数对含义的认识。
三.巩固应用,内化提高
用数对表示位置很简单,看这个队列图,我们也能把它变得很简单。现在我们把每个人的位置看作一个点,整个队列就变成了这样一副图。
四、回顾整理,反思提升
这节课你有什么收获?
第二课时
教学目标:
1、在具体的情境中,探索确定物体位置的方法,能用数对表示物体的位置。
2、使学生能在方格纸上用数对确定位置。
3、能灵活运用到日常生活中,解决实际问题。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的.位置,正确区分列和行的顺序。
教学过程:
一、创设情境,生成问题
我们全班有53名同学,但大部分的同学班主任王老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、探索交流,交流问题
新授
1、教学例2
(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?/2、
学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)/4、
小结例2:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
学生根据书上所给的数据,在图上标出“飞禽馆”“大象馆”“海洋馆”“猴山”的位置。
三、巩固应用,内化提高
学生独立找出图中的字母所在的位置,指名回答。
四、回顾整理,反思提升
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五年级数学上册教案15
一、说教材
1、教材简析
大公因数这部分内容是在学生掌握了因数概念的基础上进行教学的,主要是为学习约分做准备。按照《标准》的要求,教材中只出现求两个数的-大公因数。
2、教学目标
结合教材所处的地位和学生实际,我制定了以下教学目标:
知识目标:让学生在自学的过程中理解公因数和-大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与-大公因数。
能力目标:能根据两个数的不同关系灵活地求两个数的-大公因数。渗透集合思想,体验解决问题策略的多样化。
情感目标:让孩子在生活经验中体会成功的快乐,体会数学与人类的密切联系,感受数学与日常生活的关系。体验“生活中处处有数学,处处用数学”的理念。
3、教学重、难点:据以上的目标,我确定了本课的教学重点是让学生在自学的过程中理解公因数和-大公因数的.意义,探索找公因数的方法,会正确找出两个数的公因数与-大公因数。
二、设计理念
在概念教学中,注重问题情境的创设,充分地发挥情境的作用。由“求”转变为“找”两个数的公因数,体现方法多样化。
三、说教学流程
结合教材、教学目标及学生的实际,按照“先学后教当堂训练”教学要求我设计了下面五环节:
1、复习导入:本节课的教学是学生掌握了因数的基础上进行的,因此,我出示两个数让学生说出它的所有因数。(16、12)
2、交代目标:只有明确了学习目的,学生才能更好的去自主完成本节课的学习任务,因而在学习新课之前我首先把学习目标出示给学生,让他们明确本节课的学习任务。
3、出示自学提示:为了帮助学生更好的自学,在给出目标后,我又帮助学生拟定了两个学习的提示,让学生学有所依,学而得法,从而培养学生的自学能力。
4、自主探究,汇报交流:
在学习“公因数,-大公因数”的概念,探究求两个数的-大公因数的方法时,让学生自己学,并在遇到困难时在小组群体中自由自在地交流,无拘无束地讨论,独立思考、相互学习。在讨论与交流中,思维呈开放的态势,不同见解、不同观点相互碰撞、相互引发、相互点燃,在汇报交流中强化对比,选出合适方法,从而实现个人与他人、小组与全班的全程对话。
5、教师的教:教师在引导学生汇报时结合本节课的特点进行相机教学。
【五年级数学上册教案】相关文章:
数学五年级上册教案12-29
数学五年级上册教案模板02-16
苏教版数学五年级上册教案04-09
小学数学五年级上册教案02-08
数学上册教案01-15
五年级上册数学复习教案01-13
五年级苏教版数学上册教案12-08
五年级数学上册教案01-03
五年级上册数学教案01-02
五年级上册数学优秀教案01-23