八年级数学下册教案

时间:2024-05-16 12:27:48 数学教案 我要投稿

八年级数学下册教案

  作为一名教师,总归要编写教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编帮大家整理的八年级数学下册教案,欢迎阅读与收藏。

八年级数学下册教案

八年级数学下册教案1

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的'化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

八年级数学下册教案2

  教学目标

  (一)教学知识点

  1.用分式表示生活中的一些量.

  2.分式的基本性质及分式的有关运算法则.

  3.分式方程的概念及其解法.

  4.列分式方程,建立现实情境中的数学模型.

  (二)能力训练要求

  1.使学生有目的的梳理知识,形成这一章完整的知识体系.

  2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.

  3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.

  (三)情感与价值观要求

  使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.

  ●教学重点

  1.分式的概念及其基本性质.

  2.分式的运算法则.

  3.分式方程的概念及其解法.

  4.分式方程的应用.

  ●教学难点

  1.分式的运算及分式方程的'解法.

  2.分式方程的应用.

  ●教学方法

  讨论——交流法

  讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.

  ●教具准备

  投影片两张,实物投影仪

  第一张:问题串,(记作§3.5A)

  第二张:例题分析,(记作§3.5B)

  ●教学过程

  Ⅰ.提出问题,回顾本章的知识.

  出示投影片(§3.5A)

  问题串:

  1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.

  2.分式的性质及有关运算法则与分数有什么异同?

  3.如何解分式方程?它与解一元一次方程有何联系与区别?

  [师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.

  (教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)

  [生]实际生活中的一些量可以用分式表示,例如(用实物投影)

  某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?

  [生]我们组来回答此问题,此人晨练时平均每分钟行米.

  我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.

  [生]应为m.

  [师]同学们举的例子都很有特色,谁还能举.

  [生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?

  [生]原价为元.……

  [师]都是分式.分式有什么特点?和整式有何区别?

  [生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.

  [生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)

  某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?

  解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得

八年级数学下册教案3

  教学目标:

  1、掌握一次函数解析式的特点及意义

  2、知道一次函数与正比例函数的关系

  3、理解一次函数图象特点与解析式的联系规律

  教学重点:

  1、 一次函数解析式特点

  2、 一次函数图象特征与解析式的联系规律

  教学难点:

  1、一次函数与正比例函数关系

  2、根据已知信息写出一次函数的表达式。

  教学过程:

  Ⅰ.提出问题,创设情境

  问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

  分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

  s=570-95t.

  说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

  问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

  分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

  问题3 以上问题1和问题2表示的这两个函数有什么共同点?

  Ⅱ.导入新课

  上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

  y是x的正比例函数。

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

  (1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

  (2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

  (3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

  (4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

  (5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

  (6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

  (7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的`高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

  (2)L=2b+16,L是b的一次函数.

  (3)y=150-5x,y是x的一次函数.

  (4)s=40t,s既是t的一次函数又是正比例函数.

  (5)y=60x,y是x的一次函数,也是x的正比例函数;

  (6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

  (7)y=50+2x,y是x的一次函数,但不是x的正比例函数

  例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

  分析 根据一次函数和正比例函数的定义,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

  例4 已知y与x-3成正比例,当x=4时,y=3.

  (1)写出y与x之间的函数关系式;

  (2)y与x之间是什么函数关系;

  (3)求x=2.5时,y的值.

  解 (1)因为 y与x-3成正比例,所以y=k(x-3).

  又因为x=4时,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函数.

  (3)当x=2.5时,y=3×2.5=7.5.

  1. 2

  例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

  (1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

  (2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

  分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

  (2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

  分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

  解 在第一阶段:y=3x(0≤x≤8);

  在第二阶段:y=16+x(8≤x≤16);

  在第三阶段:y=-2x+88(24≤x≤44).

  Ⅲ.随堂练习

  根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

  2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

  超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

  Ⅳ.课时小结

  1、一次函数、正比例函数的概念及关系。

  2、能根据已知简单信息,写出一次函数的表达式。

  Ⅴ.课后作业

  1、已知y-3与x成正比例,且x=2时,y=7

  (1)写出y与x之间的函数关系.

  (2)y与x之间是什么函数关系.

  (3)计算y=-4时x的值.

  2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

  3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

  4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

  5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

八年级数学下册教案4

  一、教学目标

  (一)教学知识点

  1.掌握三角形相似的判定方法2、3.

  2.会用相似三角形的判定方法2、3来判断、证明及计算.

  (二)能力训练要求

  1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

  2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

  (三)情感与价值观要求

  1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

  2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

  二、教学重难点

  教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点:判定方法的推导及运用

  三、教学过程设计

  (一)创设情境,引入新课

  投影片

  [生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.

  [师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

  (二)新课讲授

  [师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

  [生]三边对应成比例的两个三角形相似.

  [师]下面我们就来验证一下.

  1.相似三角形的判定方法2:三边对应成比例的.两个三角形相似.

  投影片

  个组取一个相同的k值,不同的组取不同的k值,好吗?

  [生]好.

  [师]经过大家的亲身参与体会,你们得出的结论是什么呢?

  [生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

  △ABC∽△A′B′C′,理由是:

  ∠A=∠A′,∠B=∠B′,∠C=∠C′

  根据相似三角形的定义可知:△ABC∽△A′B′C′.

  [师]其他组的同学的结论相同吗?

  [生]相同.

  [师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

  2.相似三角形的判定方法3.

  [师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

  [生]两边对应成比例且夹角相等的两个三角形相似.

  [师]好,下面我们还是由大家自己推导吧.请看投影片

  [师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.

  [生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

  [师]大家同意吗?

  [生]同意.

  [师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.

  3.想一想

  107

  [师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

  在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

  [生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

  4.做一做

  [师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

  [生]一共有四种方法.

  第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

  第二种:即判定方法1

  两角对应相等的两个三角形相似.

  第三种:即判定方法2

  三边对应成比例的两个三角形相似.

  第四种:即判定方法3

  两边对应成比例且夹角相等的两个三角形相似.

  [师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

  5.议一议

  如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

  [生]解:△ABC∽△A′B′C′.

  判断方法有.

  1.三边对应成比例的两个三角形相似.

  2.两角对应相等的两个三角形相似.

  3.两边对应成比例且夹角相等.

  4.定义法.

  (三)巩固应用,拓展研究

  下面每组的两个三角形是否相似?为什么?

  生]解:(1)△ABC∽△DEF

  ∵

  ∴△ABC∽△DEF

  (2)在△ABC中

  AB=2,AC=6

  ∵∠A=∠A

  ∴△ABC∽△AEF

  (四)练习巩固,促进迁移

  依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

  (1)∠A=120°,AB=7 cm,AC=14 cm,

  ∠A′=120°,A′B′=3 cm,A′C′=6 cm,

  (2)AB=4 cm,BC=6 cm,AC=8 cm,

  A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:

  又∵∠A=∠A′

  ∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

  ∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

  (五)回顾联系,形成结构

  本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

八年级数学下册教案5

  一、教学目标

  1、理解分式的基本性质。

  2、会用分式的基本性质将分式变形。

  二、重点、难点

  1、重点:理解分式的基本性质。

  2、难点:灵活应用分式的基本性质将分式变形。

  3、认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

  三、练习题的意图分析

  1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

  2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

  3。P11习题16.1的第5题是:不改变分式的值,使下列分式的.分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

  “不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。

  四、课堂引入

  1、请同学们考虑:与相等吗?与相等吗?为什么?

  2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

  3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

  五、例题讲解

  P7例2。填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

  P11例3。约分:

  [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

  P11例4。通分:

  [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级数学下册教案6

  一、学情分析

  学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。

  二、教学任务分析

  本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:

  1.知识目标:

  ①能够证明直角三角形全等的“HL”的'判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题

  2.能力目标:

  ①进一步掌握推理证明的方法,发展演绎推理能力

  三、教学过程分析

  本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。

  1:复习提问

  1.判断两个三角形全等的方法有哪几种?

  2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。

  3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。

  我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通

  1 / 5

  过作等腰三角形底边的高来证明“等边对等角”.

  要求学生完成,一位学生的过程如下:

  已知:在△ABC中, AB=AC.

  求证:∠B=∠C.

  证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°

  又∵AB=AC,AD=AD,∴△ABD≌△ACD.

  ∴∠B=∠C(全等三角形的对应角相等)

  在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .

  也有学生认同上述的证明。

  教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。

  2:引入新课

  (1).“HL”定理.由师生共析完成

  已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′

  证明:在Rt△ABC中,AC=AB一BC(勾股定理).

  又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股

  定理).

  AB=A'B',BC=B'C',AC=A'C'.

  ∴Rt△ABC≌Rt△A'B'C' (SSS).

  教师用多媒体演示:

  定理 斜边和一条直角边对应相等的两个直角三角形全等.

  这一定理可以简单地用“斜边、直角边”或“HL”表示.

  2 / 5

  22A'B'

  从而肯定了第一位同学通过作底边的高证明两个三角形

  全等,从而得到“等边对等角”的证法是正确的.

  练习:判断下列命题的真假,并说明理由:

  (1)两个锐角对应相等的两个直角三角形全等;

  (2)斜边及一锐角对应相等的两个直角三角形全等;

  (3)两条直角边对应相等的两个直角三角形全等;

  (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题

  (4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.

  已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).

  求证:Rt△ABC≌Rt△A'B'C'.

  证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).

  CD=C'D'.

  又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.

  ∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).

  通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。

  3:做一做

  问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.

  (设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)

  4:议一议

  3 / 5

  BEADCDA'D'BB'

八年级数学下册教案7

  教学目标:

  1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

  2、能利用它们的性质和判定进行推理和计算。

  3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

  教学重点、难点:

  重点:掌握特殊平行四边形性质与判定。

  难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

  教学过程:

  一、梳理知识:

  1.特殊平行四边形的性质.

  1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

  则BC=_____cm,△BOC的周长=_____cm

  2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

  则你能求出哪些线段的长度?

  3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

  则AB=_____cm,△BOC的周长=_______cm.

  小结:特殊平行四边形的性质(PPT呈现)

  2.特殊平行四边形的判定.

  要使平行四边形ABCD成为矩形,需要增加的条件________.

  要使平行四边形ABCD成为菱形,需要增加的条件________.

  要使矩形ABCD成为正方形,需要增加的条件________.

  要使菱形ABCD成为正方形,需要增加的条件________.

  小结:特殊平行四边形的判定(PPT呈现)

  二、深化提高:

  1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

  (1)求证:四边形ADCE为矩形;

  (2)当△ABC满足什么条件时,

  四边形ADCE是一个正方形?并给出证明.

  2.如图,矩形ABCD的对角线AC、BD交于点O,

  过点D作DP∥OC,过C点作CP∥DO,交DP于点P,

  试判断四边形CODP的形状.

  变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

  变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

  3.如图,在中,是边的中点,分别是及其延长线上的点,.

  (1)求证:.

  (2)请连结,试判断四边形的形状,并说明理由.

  (3)若四边形是菱形,判断的形状。

  三、拓展提高

  1.如图,以△ABC的三边为边在BC的`同侧分别作三个等边三角形,即△ABD、

  △BCE、△ACF,

  (1)四边形ADEF是什么四边形?并说明理由

  (2)当△ABC满足什么条件时,四边形ADEF是菱形?

  (3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.

  2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

  (1)求证:BE=CD;

  (2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,

  四、课堂小结

  五、作业

  1.如图,在正方形ABCD中,P为对角线BD上一点,

  PE⊥BC,垂足为E,PF⊥CD,垂足为F。

  求证:EF=AP

  2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,

  EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。

  3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的长。

八年级数学下册教案8

  一、目标要求

  1.理解掌握异分母分式加减法法则。

  2.能正确熟练地进行异分母分式的加减运算。

  二、重点难点

  重点:异分母分式的加减法法则及其运用。

  难点:正确确定最简公分母和灵活运用法则。

  1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

  2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

  三、解题方法指导

  【例1】计算:(1)++;

  (2)-x-1;

  (3)--。

  分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

  解:(1)原式=-+=-+====;

  (2)原式======;

  (3)原式=--===。

  【例2】计算:。+++。

  分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。

  解:原式=++=++=+=+==。

  四、激活思维训练

  ▲知识点:异分母分式的.加减

  【例】计算:-+。

  分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

  解:原式=[x+2-]-[x+3+]

  +[+1]

  =x+2--x-3-++1

  =--+=====。

  五、基础知识检测

  1.填空题:

八年级数学下册教案9

  例题讲解

  引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

  1、你有哪些乘车方案?

  2、只租8辆车,能否一次把客人都运送走?

  问题2;怎样租车

  某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

  甲种客车乙种客车

  载客量(单位:人/辆)4530

  租金(单位:元/辆)400280

  (1)共需租多少辆汽车?

  (2)给出最节省费用的.租车方案。

  分析;

  (1)要保证240名师生有车坐

  (2)要使每辆汽车上至少要有1名教师

  根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

  设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

  y=400x+280(6-x)

  化简为:y=120x+1680

  讨论:

  根据问题中的条件,自变量x的取值应有几种可能?

  为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。

  在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

  方案一:

  4两甲种客车,2两乙种客车

  y1=120×4+1680=2160

  方案二:

  5两甲种客车,1辆乙种客车

八年级数学下册教案10

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的.运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

八年级数学下册教案11

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、 知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3学会简单的合情推理与数学说理

  二、 过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、 情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、 重点与难点

  1、探索和证明勾股定理

  2熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法(图2)

  第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

  第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的

  角三角形拼接形成的`(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

  因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

八年级数学下册教案12

  一、学习目标

  二、学习过程

  阅读教材

  独立完成下列预习作业:

  1、观察下列算式:

  ⑴ ⑵

  请写出分数的乘除法法则:

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的`分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  2、分式的乘除法法则:(类似于分数乘除法法则)

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  3、分式乘方:即分式乘方,是把分子、分母分别乘方.

  三、合作交流,解决问题:

  1、计算:

  ⑴ ; ⑵

  2、计算:

  ⑴ ; ⑵ .

  4、计算:⑴ ⑵

  四、课堂测控:

  1、计算:

八年级数学下册教案13

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的.一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

八年级数学下册教案14

  教学目标:

  1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

  2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;

  3、使学生能够利用最简公分母进行验根.

  教学重点:

  可化为一元二次方程的分式方程的解法.

  教学难点:

  教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  教学过程:

  在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.

  为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.

  一、新课引入:

  1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?

  2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  3、产生增根的原因是什么?.

  二、新课讲解:

  通过新课引入,可直接点出本节的`内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.

  点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

  在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

八年级数学下册教案15

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的`类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

【八年级数学下册教案】相关文章:

八年级数学下册教案01-10

八年级下册数学的教案优秀02-27

小学数学下册教案11-15

小学数学下册教案12-27

八年级数学下册教案15篇02-20

八年级数学下册教案(15篇)02-20

八年级下册最新湘教版数学教案02-29

2022八年级下册数学教案10-10

八年级下册地理教案08-23