- 相关推荐
解决问题的策略苏教版六年级数学教案(通用12篇)
作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编为大家收集的解决问题的策略苏教版六年级数学教案,仅供参考,欢迎大家阅读。
解决问题的策略六年级数学教案 1
教学内容:
课本第68--69页例1和“练一练”,练习十一第1-3题。
教学目标:
1、让学生初步学会用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、让学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
让学生掌握用“假设”的策略解决一些简单问题的方法。
教学难点:
弄清在有差数关系的问题中假设后总量发生的变化。
课前准备:
小黑板
教学过程:
一、游戏导入
谈话:同学们,咱们先来做一个数学游戏,注意听了。
一种易拉罐饮料搞促销活动,4个有奖拉环换一个杯子。老师收集了8个有奖拉环,可以换几个杯子?要想换5个杯子,需要几个有奖拉环?
二、探究新知,初步理解假设的策略
1、谈话:下面,咱们再来做一个抢答游戏。开始:
(1)小明把720毫升果汁倒入9个相同的小杯,正好都倒满,每个小杯的容量是多少毫升?
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?
谈话:下一题,看谁反应快。
(3)出示例题。
2、谈话:能用720÷7吗?为什么?(题目中出现了两种不同的杯子了)
出示例题图。
这两种杯子有关系吗?(小杯的容量是大杯的1/3)这什么意思呢?“正好都倒满”又怎么理解?
要解决什么问题?“各多少毫升”意思是……
3、探索假设的.过程。
谈话:这道题中有两种不同的杯子了,同学们,能解决吗?请拿出作业纸,先在图上画一画,然后解答,并且把你的想法说给同桌听。
选择两名学生展示不同解法。
(1)提问:你怎样想的?(把大杯换成小杯)怎么想到的?明白他的意思吗?(找学生再说一遍)方法和他一样的同学请举手。
这些同学都是把1个大杯换成……(3个小杯)。
板书:假设都是小杯。
(2)提问:你又是怎样想的?(把小杯换成大杯)为什么要换?在图上怎么表示?这儿的“3”是什么意思?
这样做的同学请举手,这些同学都是怎样想的呢?
板书:假设都是大杯。
4、比较。
谈话:同学们用两种方法解决了这题。原来既有大杯又有小杯,第一种方法假设都是小杯了,第二种方法假设都是大杯。
提问:这两种方法有什么共同的地方?
指出:这两种方法都是把两种不同的杯子假设成一种相同的杯子。
5、检验。
谈话:我们解答的对不对呢?同桌相互说说检验过程。
指名口答。
如果学生只说出满足一个条件,教师就引导:这才满足题目中的一个条件……,还要满足另一个……还要用……
谈话:希望同学们能养成检验的好习惯。
三、拓展应用,巩固策略
完成P69“练一练”。
学生独立读题,分析题意,指名说说思考过程,列式解答,完成后交流解答过程。
四、全课总结,优化策略
谈话:这节课,我们已经解决了这样几道题。
出示例题、练习题和练一练。
提问:解题时我们运用了什么方法?
谈话:是把两种不同的杯子假设成一种相同的杯子,练一练是把桌子假设成椅子,或把椅子假设成桌子。这就是我们今天学习的解决问题的一种策略--假设。
板书课题。
五、布置作业
练习十一第1-3题。
教学反思:
解决问题的策略六年级数学教案 2
教学内容:
课本第70--71页例2和“练一练”,练习十一第4-7题。
教学目标:
1、让学生进一步学会用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、让学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
让学生掌握用“假设”的策略解决一些简单问题的方法。
教学难点:
怎样使用“假设”的策略解决实际问题。
课前准备:
小黑板
教学过程:
一、复习回顾
昨天,我们学习了哪种解决问题的策略?
今天我们继续学习假设的策略解决问题。
二、例题教学,探索新知
1、出示例2。
在1个大盒和5个同样的小盒里装满球,正好是80个。每个大盒比小盒多装8个。大盒里装了多少个球:每个小盒呢?
2、分析比较。
提问:这道题和我们昨天学习的问题有什么不同?
根据回答概括:昨天是倍数关系,而这题是相差关系。
“每个大盒比每个小盒多装8个”这是什么意思?你能想到什么?
3、探索假设的过程。
(1)出示相应的假设过程图。
提问:你怎么想的?(假设都是小盒)
那还能装80个球吗?为什么?
(2)出示相应的假设过程图。
提问:还可以怎么想?(假设都是大盒)
假设以后就全是什么盒子了?
现在一共能装多少个球?为什么?
(3)解决问题。
谈话:下面请同学们任选一种方法,在作业纸上解答。
出示两份不同的解法,让学生在座位上介绍解题过程。
追问:①这儿的“8”什么意思?为什么要-8?
②这儿的“40”什么意思?为什么还要+40?
4、回顾反思。
提问:在解决这道题时,我们用到了什么方法?(假设)通过假设,就可以把两种不同的.盒子假设成一种相同的盒子。
但要注意的是,假设以后什么发生了变化?(装球的总数发生了变化)所以计算时要用80-8或80+40。
三、巩固反思,提升策略
1、做“练一练”第1、2题。
独立练习,完成后交流核对。
2、练习十一第1、2题。
直接填写在书上,完成后集体核对。
3、练习十一第5题。
先填空,再解答。
4、练习十一第7题。
先完成下面的填空,再列式解答。完成后交流解法有什么不同。
四、课堂总结
这两节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?
五、布置作业
练习十一第3、4、6题。
教学反思:
解决问题的策略六年级数学教案 3
教学内容:教学91页的例2,完成随后的“练一练”。
教学目标:
1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、定解题思路,并有效的解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
1、回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?
根据学生回答板书:画图、列表、倒推、替换
2、提出课题:利用这些策略可以方便地帮助我们解决一些实际问题。今天,我们继续来研究解决问题的策略。(揭题)
二、新课:
1、创设情景,提出假设
(边描述边出示例题)提问:你准备怎样来解决这个问题?
学生可能一下子想不到提出假设,这时可提示学生:在解决例1时,碰到这样的问题我们可以先怎样想?
学生独立思考交流想法。
根据学生回答出示各种假设:
a、假设10只都是大船
b、假设10只都是小船
问:你们的.想法都是把船假设成同一种船。还有其他想法吗?
c、假设5只大船,5只小船。
2、借助画图,初步感知调整策略
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(1)讨论画图:
a.如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?(学生说不出来可以追问:想想,上节课我们是用什么策略把数量关系清晰的表达出来的?)学生回答:画图
b.你准备怎么来画呢?引导学生:用简明的符号来表示船和人(课件出示10只大船图,并给学生也提供10只大船图)
(2)研究调整:
a.发现矛盾引发思考:
问题1:假设10只船都是大船,从图上我们可以看出能多坐几个人呢?为什么会多出来呢?
学生独立思考并小组交流
反馈明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人(板书:多出8人)
b.借助画图,研究调整:
问题2:那需要把几只大船调整为小船,才能使10只船正好坐42人呢?)(板书:大船→小船)
先想一想,然后再图上画一画。(学生在提供的图上画一画,教师巡视)
集体交流:选择比较典型的2种画法,上台展示并让学生说说想法
追问:你是怎么想到把4条大船调整为4条小船的呢?
帮助学生初步感知调整策略:一条小船看成一条大船会多出2人,多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
板书:5-3=2(人)
8÷2=4(条)
3、借助列表,再次感知调整策略
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)这位同学把10只船假设成5只大船和5只小船这样两种不同的船,那接下来我们就借助以前学过的列表的方法来试着推算大船和小船各有多少只。
(1)设计表格:(出示空表格)这张表格中需要哪些数量呢?完善表格项目
大船只数 小船只数 总人数 与42人相比
5 5 5x5+3x5=40 少了2人
(2)借助表格调整:
a.填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少2人)
b.引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
c.集体交流,得出方法:
学生展示方法:
方法优化:选取一次调整成功的追问:你是怎么想的呢?
引导学生:少2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多做2人,2÷2=1(条),所以调整为小船4条,大船6条。
(板书:小船→大船,2÷2=1(条))
4、检验结果
刚才我们算出了有6只大船4只小船,那是不是正确的结果呢?你有办法检验吗?
学生口答,老师板书算式:6x5+4x3=42(人)
6+4=10(条)
还有其它方法吗?想一想,在小组里交流一下。
5、回顾整理,提炼策略
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(1)引导学生整体回顾:先提出假设,假设后的总人数与实际人数不一样,这时就需要进行调整,我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:1.假设2.调整3.检验)
(2)突破难点回顾:
a.在借助画图和表格进行调整时,我们又是怎么想的呢?我们先算出假设与实际总数相差多少,再算算每一份相差多少,最后算出调整数量。(并逐一板书)
b.你是如何确定需要把大船调整为小船,还是把小船调整为大船的呢?(结合板书使学生明确:人数多了,需要把大船调整为小船;人数少了,需要把小船调整为大船。)
三、练习:
1.运用策略解决鸡兔同笼问题——巩固画图调整的策略
谈话:下面我们就用这样的策略来解决一些问题。
a.出示:练一练1的题目
b.要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)
c.如果假设都是鸡,可以怎样借助画图进行调整来解决这个问题?有困难的学生利用书上的提示来独立完成。
d.交流:谁来想大家交流一下你是怎么做的,又是怎么想?
让学生完整说一说,是怎样画图、调整,来推算出结果的)
2.渗透估计意识,优化策略——巩固表格调整的策略
谈话:刚才大家利用假设的策略解决了非常有名的“鸡兔同笼”问题,其实在生活中有很多这样的问题,六年级的同学就遇到了一些问题,我们一起来看看,能不能帮助他们解决。
a.练一练2,出示题目:估一估:可能会是各几块?你是怎么想的?
b.你估计的怎样?我们就把你估计的结果作为你的一种假设,你准备借助什么方法来帮助你调整解决这个问题呢?
学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?
通过学生的交流明白:数量多,画图起来不方便,用列表的方法比较方便。
c.学生展示,集体交流,说说怎样通过列表、调整,来推算出结果。
四、小结反思,分享收获
今天,我们学习了解决问题的策略,你有什么收获呢?
引导学生从以下几点反思:
1、用假设的策略可解决怎样的实际问题?
2、如何用假设的策略解决实际问题?重点引导学生说说如何通过画图、列表进行调整来推算结果呢?
3、怎样根据实际情况选择画图或列表的方法?
4、在本课的学习中还有什么其它的收获和体验?
板书设计
①提出假设——发现矛盾
②作出调整:x与实际人数比多出8人x少2人
(画图或列表等) 每只船人数比 5-3=2(人) 5-3=2(人)
调整数量 8÷2=4(只) 2÷2=1(人)
大船→小船 小船→大船
解决问题的策略六年级数学教案 4
教学内容:
苏教版义务教育教科书《数学》六年级上册68~69页例1、练一练,第72页练习十一第1~3题。
教科书第89-90页的例1“练一练”,练习十七第1题。
教学目标:
1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
解决用假设策略时总量不变的实际问题,认识假设的策略。
教学难点:
运用假设策略分析数量关系。
教学过程:
一、出示问题,选择策略
1、以图文结合的方式呈现例1,要求学生边读边看图。
2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?
3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?
如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?
4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?
二、自主探索,运用策略
1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?
结合例题中的示意图提问:
一个大杯可以替换成几个小杯?
把1个大杯替换成3个小杯的依据是什么?
由1个大杯可替换成3个小杯,你想到了什么?
小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?
(1)提出问题后,要求让学生看图思考。
(2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的'容量是大杯的1/3”,3个小杯的果汁正好可
以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。
(3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
3、列式解答:
引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。
4、检验。
引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生
通过计算进行检验,并完成答句。
三、回顾与反思,提升策略
提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?
学生交流、汇报。
四、拓展应用,巩固策略。
1、指导完成“练一练”。
(1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。
(2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?
(3)追问:威慑么这道题假设全部买椅子而不是假设全部买桌子?
(4)为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也
很重要。
(5)让学生自主进行检验。
(6)反思小结:解决这个问题的关键是什么?
2、课堂作业:做练习十一第1题。
独立完成,同桌互说自己的想法。
全班交流。
3、做练习十一第2题。
提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?
独立完成解答,指名板演。
五、全课总结
通过这节课的学习,你有什么收获和感想?
解决问题的策略六年级数学教案 5
教学内容:
课本第58-60页例2和“练一练”,第61页第3-5题。
教学目标:
1、使学生经历解决问题的过程;理解和掌握归一问题的结构和数量关系进一步感受用列表的方法整理条件和问题的过程;体会从条件和问题出发分析数量关系,探寻解题思路的策略;能按一般步骤正确解决相关的实际问题。
2、使学生经历把现实问题抽象成数学问题的过程,培养发现和提出问题的能力,增强用数学眼光观察生活现象的意识;提高分析问题和解决问题的能力。
教学重点:
理解和掌握归一问题的结构和数量关系。
教学难点:
掌握归总和归一两类问题的内在联系,建立结构化、模块化的知识系统。
教学过程:
一、谈话引导,揭示课题
谈话:上节课,我们进一步学习了解决问题的策略,初步学会了整理条件,归纳了解决问题的步骤,还学会了灵活运用策略分析数量关系。今天我们继续学习解决问题的策略,大家要能依据解题步骤解决实际问题,进一步学会列表整理条件,继续用不同策略和方法分析数量关系,认识解决问题的不同方法。有信心吗?(板书:解决问题的.策略)
二、解决问题,感悟策略
1、探究问题解决。
(1)理解题意。
交流:题里表格中怎样表示条件的,问题是什么?
引导:请仔细观察表内条件的排列有什么规律,表里条件说明的什么意思,你是怎样理解的?同桌互相说一说。
交流:你是怎样理解表内条件的,它让你知道了什么?(学生说明自己的理解,引导发现每2小时下降12厘米) . .
指出:我们观察例题表里的条件,能直接看出都是每隔2小时观察一次,每次水位都下降12厘米,也就是每2小时水位下降12厘米。(板书:2小时一12厘米)
提问:要求的问题是什么?“照这样的速度”是什么意思?
(2)分析数量关系。
交流:你是怎样想的,可以怎样算?请把你的想法和算法和大家交流、分享。
追问:回顾一下分析过程,你觉得黑板上这样列表整理条件,对我们分析数量关系有什么好处?(可以清楚地看出数量之间的联系,容易找到解决问题的方法)找到了哪几种算法?
(3)列式解答并检验。
交流:你是怎样解答的?(板书算式)每一步计算的什么?不同的算法呢?(板书算式)
2、完成“想一想”。
提问:现在要求的是什么问题?(与前面条件、问题对应板书:12小时--?厘米)看看条件和问题的联系,这个问题应该怎样解答?
指名学生口头列式解答,教师板书算式。
提问:每一步求出的是什么?你是从哪里很快看出数量之间的联系的?
指出:这里把条件、问题对应起来整理,就能很清楚地看出它们之间的联系,知道要先求出什么新条件,找到解答方法。
3、比较异同,体会联系。
提问:比较上面两个问题的解答过程,有什么相同的特点,有什么不同的地方?
4、回顾反思,交流体会。
交流:交流一下,在解决问题的过程中你有哪些体会?
三、练习巩固,内化策略
1、做“练一练”第1题。
学生阅读,在表格里整理条件和问题。
提问:求小军用的元数和小丽买的本数,都要先求什么?你是怎样想的?你觉得这样列表整理的策略,有什么作用?
2、做“练一练”第2题。
让学生独立解答。
提问:你是怎样算的?(板书算式)
解决这个问题,你是怎样想的?有不同的思考方法吗?
四、全课总结,交流收获
提问:通过这节课解决问题的策略的学习,你学到了些什么,可以总结出哪些体会?
作业设计:
1、练习九第4题和第5题。
2、练习九第6题。
解决问题的策略六年级数学教案 6
教学内容:
课本第96页。
教学目标:
1.让学生会用列举的策略解决球队比赛的不同安排,感受列举法是解决问题的一种常用的方法。
2.使学生在解决问题的过程中,进一步体会列举法在解决问题中的重要性,从而能更自觉、主动地运用列举的策略解决生活中的实际问题。
3.进一步积累解决问题的经验,增强解决问题的策略意识。
教学重点:
引导学生运用列举的`策略解决问题。
教学难点:
让学生主动、自觉地运用选择策略解决问题。
教学准备:
课件
教学过程:
一、谈话导入,明确目标。(预设1分钟)
明确目标。
这节课我们进一步体会列举法在解决问题中的重要性,自觉、主动地运用列举的策略解决生活中的实际问题。
二、目标驱动,自主学习。(预设17分钟)
1.学习例题2:
南山中心小学举行小学生足球赛,有4支球队参加,分别是红队、黄队、绿队和蓝队。如果每两支球队比赛一场,一共要比赛多少场?
导入:题中有哪些数学信息?围绕导学单进行自主学习。
2.自学
导学单:
(1)理解题意,“每两支球队比赛一场”是什么意思?
(2)你能写出所有的比赛吗?先试一试。再与同桌交流。
(3)解决这各问题时选择怎样的方法,解决问题时要注意什么?
3.小组交流
交流内容
(1)你用什么方法解决这个问题的?
(2)列举出各场比赛时,要注意些什么?
(3)回顾解决问题的过程,你有什么体会?
师:列举时可以列表,也可以画图,根据问题的特点选择合适的列举方法。
在解决问题时,列举法是一种很好的解决问题的策略。在列举时有哪些注意点?
三、全班交流,提炼建模。(预设2分钟)
说说可以从哪儿想起,有序的表达自己的思考过程,尽可能说清楚,说全面。
四、分层练习,巩固内化。(预设10分钟)
【基本练习】
1.完成“练一练”
(1)学生读题,理解题意
(2)独立完成。
(3)交流方法。
教师提问:你能列举出答案吗?集体交流时引导学生说说是怎么想的。
2.练习十七第4题
(1)独立完成
(2)集体交流,纠错
提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?
交流时引导学生思考问题需全面有序。
3.练习十一第5题
(1)学生读题,理解题意
(2)独立想一想,有序列举,小组说一说。
(3)集体交流。
4.练习十一第6题
(1)学生独立完成
(2)集体交流,投中2次的可能几种,怎样计算才能不遗漏,不重复?
5练习十一第7题
展示各种涂法,表达想法,进行校对和订正。
五、课堂总结:
通过这节课的学习,你学到了什么知识?
解决问题的策略六年级数学教案 7
教学内容:教科书第91页例2,第92页“练一练”第1、2题。
教学目标:
1、使学生在解决问题的过程中,初步学会用假设的策略,分析数量关系,确定解题思路,并有效地解决问题。
2、使学生感受假设的策略是为了先满足一个条件,进而感受再用替换的策略调整以满足另一个条件,感受这两种策略结合后解决问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的策略意识,获得解决问题的`成功体验,增强学习数学的信心。
教学重点:会用“假设”的策略分析数量关系,用“替换”的策略调整,从而有效解决问题。
教学难点:理解“假设”是为了满足第一个条件,“替换”是为了进一步满足第二个条件,理解替换的过程、替换次数就是换得的物体的数量。
教学过程:
一、复习引入
师:同学们,以前我们已经学习了一些解决问题的策略。还记得有哪些策略来解决问题呢?
(一一列举、列表、倒推、画图、替换。)
师引入:解决问题的策略还有很多。今天我们要继续研究解决问题的策略。(板书课题)
二、教学例题
1、出示: 21人去黄山湖公园划船,一共租用了5只船。大船每只坐5人,小船每只坐3人。大船和小船各租用了多少只?
师:首先,我们一起来看这样一个问题。
从题中你知道了哪些信息?
那么,你认为怎样租船最合理(好)?(没有空位;每只船都坐满……)
师:要解决这个问题,我们要满足哪几个条件?
(一共5只船;只能坐21人,也就是只有21个座位)
师:你认为可以用什么策略来解决这个问题呢?
请自己先想一想,再把你的想法在小组里交流。
2、汇报方法
师:谁先来说说你的想法?
(1)一一列举
大船 小船 总人数
1 4 17人
2 3 19人
生汇报,师适时提问。
师:你怎么知道小船是4只呢?能坐多少人?
你怎么想到大船要变成2只呢?(大船太多了;一只大船比一只小船能多坐2人…….)
师:哦,我明白了,你就是把一只小船——换成了一只大船。
现在要坐21人,怎么办? (再把一只小船替换成一只大船)
课件演示过程。
师:这时候,大船是几只?小船是几只?能坐多少人?
问题解决了吗?
齐答。
小结:刚才,我们先满足5只这个条件,想大船1只小船4只,发现总人数17人不满足第二个条件,就用替换的方法,把小船替换成大船,直到两个条件都满足为止。
其实,我们就是假设了大船是1只,小船是4只来思考的。
你还有别的假设方法吗?(还可以怎样假设?)
(2)假设全是大船
师:那也就是说大船几只?小船呢?
总人数25人是怎样得到的?(板书:5x5=25人)
师:需要5只大船吗?为什么不需要? (因为还有4个空位)
4个空位你是怎么知道的?(板书:25-21=4人)
怎样才能减少这4个空位呢? (把大船替换成小船)
师:哦,把大船替换成小船,替换1次,结果会怎样? (减少2个空位)
2个空位你是怎样得到的?(板书:5-3)
师:可现在有4个空位,要替换几次?2次可以怎样算?(板书:4÷(5-3)=2)
师:我们把大船替换成小船,替换了2次就可以得到哪种船的只数?为什么?
(大替换成小,替换了2次就有2只小船。)(板书:小)
(3)假设全是小船
师:也就是说大船几只?小船呢?
15人是怎样得到的?(板书3x5=15人)
你怎么知道还有6人没坐到船?该怎么办?(把小船替换成大船)
为什么要把小替换成大?(能多坐2人)
替换几次?可以怎样算?(板书:6÷(5-3)=3)
替换了3次就得到3只什么船?
3、小结
师:同学们,刚才我们解决这个问题时,用了什么策略?
有的同学用了一一列举、列表、画图……
你喜欢哪种?说说你的理由。
三、巩固练习
1、 师:你们都比较喜欢这种方法,那你能用这种方法完成下面的填空呢?
出示:六年级同学制作了176件蝴蝶标本,分别在13块展板上展出。每块小展板贴8件,每块大展板贴20件。两种展板各有多少块?
假设全是( )展板,一共能贴( )件蝴蝶标本。与176件相差( )件标本,每块大展板与每块小展板相差( )件。应把( )展板替换成( )展板,要替换( )次,才能满足176件这个条件。所以,( )展板有( )块,( )展板有( )块。
师:260件是怎样算的?
为什么要把大展板替换成小展板?
替换6次是怎样想的?
替换6次就有6块什么展板?
比较这两种方法,有什么相同的地方?
2、师:你能用假设和替换的策略解决下面一题吗?
出示:鸡和兔一共8只,数一数腿有22条。你知道鸡和兔各有多少只?
学生汇报做法,说明每一步的想法。
师:可以怎样检验?
四、课堂小结
师:今天我们学习了——?什么策略?
其实解决问题的策略很多,我们在解答时可以灵活选择策略。像今天这样的问题,我们不能直接找到解答的方法,就可以用假设的策略先满足一个条件,再进行替换满足第二个条件,最终解决问题。
解决问题的策略六年级数学教案 8
教学目标:
1.让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2.让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。
3.感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。
教学重点:
掌握用转化的策略解决分数问题的方法,增强策略意识。
教学难点:
根据具体问题,确定转化后要实现的目标和转化的具体方法。
教学方法:
讨论、观察
教学手段:
多媒体课件
教学过程:
一、复习引入
老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。
出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。
提问:在刚才的'做题、交流过程中,你有什么感受或发现?
二、新授,尝试运用转化的策略解决问题
1.教学例2
课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的。
能不能转化成更简单的算式?
出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?
引导:看图想一想,可以把这一算式转化成怎样的算式计算?
提问:这时该怎么做呢?学生独立列式计算。
和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?
小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。
2.练一练
三、练习运用转化策略
1.练习十六第5题 比较几种方法哪种更简单呢?你有什么体会呢?
2.练习十六第6题
出示问题,指导学生理解图意。
明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。
如果不画图,有更简便计算方法吗?
进一步提问:如果有64支球队,产生冠军一共要比赛多少场?
3.练习十六第7、8、10题
四、总结故事启迪,领悟转化的技巧
五、指导完成思考题
弄清27+19的和就是最大长方形的长与宽的长度之和。
作业布置 练习十六第9、11、12、13题
解决问题的策略六年级数学教案 9
目标预设:
1、让学生在解决问题中学会用“倒推思维”的策略寻求解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、在观察、操作、讨论、交流中提高探索和解决实际问题的能力,获得解决问题成功体验。
3、让学生在对解决实际问题中不断反思,感受“倒推思维”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
4、培养学生独立思考、善于倾听、质疑和验算的数学学习习惯。
教学重点:
体会策略是解决问题的计策,学会用“倒推思维”的策略解决问题。
教学难点:
能根据具体的问题确定合理的解题步骤。
教学具准备:
果汁杯两个、一瓶400毫升的果汁、果汁图片、小黑板若干
课程实施:
课前游戏:
1、做相反动作
2、猜数字游戏
一个数加2得8,这个数是——
一个数减2得8,这个数是——
一个数乘2得8,这个数是——
一个数除以2得8,这个数是——
师:你们的表现真的很棒。
师生问好!
一、生活数学,激趣启智
师:从课前游戏中我发现,咱班同学特别喜欢数学,今天就让我们随同冬冬和明明,去寻找生活中的数学,一同研究解决问题的策略。
出示课题:解决问题的策略
师:上周末,他俩去海门表妹家玩,乘坐的公共汽车从余东出发,沿途经过了树勋、麒麟、汤家、三厂,到达了海门。
小黑板出示:余东树勋麒麟汤家三厂海门
师:想想如果他们想原路返回,会依次经过哪些乡镇呢?
生齐:海门、三厂、汤家、麒麟、树勋、余东。
师:在回答这个问题时,我们都是——倒过来,一个一个往前推。
板书:倒推。
二、引导探究,掌握方法
师:车子终于到了表妹方方家了,方方正准备了400毫升的果汁来招待好朋友呢?
出示图片、实物(两杯果汁不一样多)
师:都是好朋友,这样公平吗?
生:不公平。
师:怎样就公平了?
生:两杯一样多。
师:如果从甲杯倒入乙杯40毫升后一样多,那你知道原来两杯果汁各有多少毫升吗?
师:请先独立思考,然后说说你第一步是怎么想的?
生:共有400毫升,现在果汁同样多,那就说明都有200毫升。
教师根据学生的回答,进行板书。400÷2=200ml
甲杯(____毫升)乙杯(____毫升)
现在
原来
教师出示小黑板
师:接下来呢?
学生说算式,教师板书。
甲:200+40=240ml
乙:200-40=160ml
师:同意他的观点吗?让我们一起通过操作来验证一下吧。
师:要想知道原来是多少?我们可以倒回去,观察果汁与刚才有何变化?教师演示
引导学生说出:甲杯在200毫升的基础上就多了——40毫升,这就说明了,甲杯原来比现在——多40毫升。那乙杯呢?
生:乙杯原来比现在少40毫升。
师:现在你能把表格补充完整吗?
师:如何确定自己的结果是不是正确呢?(口述验算过程)
师:喝完了果汁,方方给他俩讲起了她最近收集邮票的情况。
小黑板出示:方方原有一些邮票,最近又收集了24张,送给好友小军30张,还剩52张。方方原有多少张邮票?
师:请同学们默读一遍,想想从题中你读出了哪些信息?
生齐说:冬冬原有x张,又收集了24张,送给小军30张,还剩52张。
师:①想想用什么方式能清晰地把方方的邮票变化情况表示来?
独立思考,并在纸上写一写、画一画、连一连。
②在小组里交流,说说你是准备如何解决的?
③最后独立列出算式。
学生按要求逐步尝试。教师关注学生反应,把较好的作品画在小黑板上。
小黑板出示:冬冬原有?张又收集了24张送给小军30张还剩52张
师:这是某某的思考方式,让我们来听听他是怎么想的?
生:我是这样思考的:现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。
学生回答时,教师边板书反向箭头。
师:你们听明白了?谁来说说刚才这位同学是怎么思考的?
生复述
师:你真会倾听别人的发言,能把刚才这位同学的思路清晰的表达了出来。老师也听懂了。就是现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。
师:能根据这样的思路把算式列出来吗?
生齐说,教师板书52+30-24=58张
师:看着这样的算式你有什么疑问吗?
师:老师有个问题,送给小军30张后变少了,应用减法,为何计算时用了加上了30?
生:……
师:是呀,送给小军30张后变少了,是针对原来的`邮票张数来说的,但现在我们知道了结果还剩52张,要求原来的,所以要反过来加30张。明白了吗?
师:还有其他的思考方式吗?
生:……
教师根据学生的解释,列出算式,52+(30-24)
师:你觉得这样列式有道理吗?谁来说说。
生:我是这样思考的:收集24张又送人30张,实则相当于送人6张,送人6张后是52张,那原来是52+6=58张。所以列式为52+(30-24)
师:这个6表示现在比原来……(如果学生不会说,可引导学生继续说下去)
师:怎么知道算出来的结果对不对呢?(再可以顺过去推算,看剩下的是不是52张。)
师:你能用算式表示验算的过程吗?
学生边说,边板书验算过程。58+24-30=52张
师:通过了验算,我们才可以放心的写出答了。
板书:答:冬冬原有邮票58张。
师:刚才的两题我们都运用倒过来思考的
方式,实际上这也是解决问题策略中的一种,这种方法就叫——倒推法。
板书:法
三、运用方法,巩固知识
师:接下来,让我们运用倒推法一起解决他们三人遇到的生活中的问题。
拿出练习纸。认真完成好后,请思考题。
学生独立思考完成。
练习纸
①冬冬和明明也示了他们的画片,他们原来共有60张画片,冬冬给了明明5张后,两人画片一样多。原来两人各有多少张画片?
②他们三人开始折千纸鹤了,如果裁纸要用5分钟,折纸鹤要25分钟,把纸鹤穿成一串要用10分钟。若要在上午十时全部完成,那么他们最迟从什么时间开始动手做?
③明明也给他们讲起了班级图书角的信息,他说昨天图书角原有一些图书,当天有人捐献了3本图书放入图书角,班级同学共借出10本,现在有8本,问原有图书多少本?
④玩了一天,冬冬和明明开始返回了,他们乘坐的公交车在文峰站点上来了9人,又下去了5人,这时车上正好有10人。问到站前车上原有多少人?
池中的睡莲所遮盖的面积每天增加一倍,10天恰好遮住整个水池,睡莲遮住水池的一半需要多少天?
(用阴影表示出每天的面积变化情况)
第10天第9天第8天
师:同桌交换,谁能确认自己的答案是正确的?
师:告诉我你是怎么做到这样自信的?
生:我检验的。
师:那你说吧。
同桌互批。
师:有错误的举手。教师询问原因,全班一同解决。
师:题结果是9天。
五、课堂小结
师:从大家的表现来看,你们掌握的很好。说说这节课你有哪些收获吧。
生:……
师:总结,解决问题的策略多种多样,今天学习的倒推法仅仅是众多方法中的一种,根据题目的要求选择合适的解决方法是最为重要的。
教后反思:
本节课从路线问题导入,让学生体会从原路返回时会依次经过哪些乡镇着手,初步体会倒推法的策略在生活中的价值,激起学生浓厚的学习兴趣。
教学例题时,创设具体的生活情境,通过两个学生的行程,把两个例题有机的串联起来。教学例1时,通过让学生先独立思考,然后通过演示操作,让学生更好地体会解题过程。这里当学生说到甲杯比乙杯多80毫升时,应恰当地处理。教学例2时,通过箭头的思路图,清晰的表示出邮票张数的变化情况,教学时,引导学生提出质疑,理解送出的为何要加。同时对于第二种解法教师应更好地进行解释。
练习设计了分层题,使学有余力的同学学得更多。基本练习题更关注了与例2类似的练习,使同学们掌握的更加的牢固。
解决问题的策略六年级数学教案 10
教学内容:
教材第100—102页的内容。
教学目标:
1、使学生加深理解解决问题从条件想起的策略,进一步掌握从条件想起的策略,能比较熟练地用从条件想起的策略解决两步计算实际问题。
2、使学生能从条件想起说明解决实际问题的分析推理过程,进一步发展根据条件分析、推理的思维能力,进一步积累解决实际问题的经验。
3、使学生进一步体会数学方法、策略的价值;培养分析、推理和尝试反思的意识。
教学过程:
一、揭示课题
谈话导入:这节课我们复习解决问题的策略。(板书课题)
二、回顾策略
1、根据条件提出不同的问题。
果园仓库里原来存放了200箱苹果,又运来8车,每车75箱。
林场要栽800棵树,先栽了200棵,其余的要平均栽在4个苗圃里。
2、回顾过程。
提问:回顾一下刚才提出问题的思考过程,你有哪些体会?
板书:从条件想起→找有联系的条件→提出可以求的问题
三、应用策略
1、做期末复习第25题。
让学生读题,说说条件和问题。
交流:你是怎样想的?(指名几人说思路)
2、做期末复习第27题。
让学生独立读题并解答。教师板书算式和得数。
3、做期末复习第28题。
出示题目和表格,让学生读题并说明知道了什么,表格里填写什么内容。
交流:二、三、四年级展出的'作品个有多少幅?
完成思考题。
指名学生读题,相互交流是如何思考的。
让学生有错的订正,没有解答的列式解答。
四、课堂总结
你能说说通过复习,你有哪些收获?
板书设计:
(42+18)x3=180(本)
(56—8)÷3=16(米)
45幅61幅86幅
思考题
(200—1)x5=995(米)
教学反思:
在复习课内容设计上要有层次性,并且没有进行分组对比,从而导致题型过于多和乱,必须把题型更加有整体性与系统性,而在共同体中没有让学生过多的参与进来,自始至终我一直灌输的太多,使那些会的学生还是会,不会的学生还是不会,这样就失去复习课的查漏补缺的目的和真正意义,经过大家的研讨课我也有了对复习课的重新认识,比如1。复习课要对知识进行整理,形成知识的网。教师要对学生整理知识进行必要指导,让学生感觉整理的知识是有系统的,不能简单地对知识进行“梳理”,“梳理”不是“整理”,要从知识的“面”的角度整理,整理知识之间的联系。
解决问题的策略六年级数学教案 11
教学内容:
课本P56-58例1,“想一想”,“练一练”和P61第1-2题。
教学目标:
1、使学生经历解决问题的过程;初步了解列表整理条件和问题的策略;体验从条件和问题出发分析数量关系探寻解题思路的策略;归纳和总结解决问题的一般步骤,能按一般步骤正确解决相关的实际问题。
2、进一步丰富解决问题的经验,逐步学会有条理地思考,有理有据地表达,提高分析问题和解决问题的能力。
3、养成自觉检验、自我反思的习惯和意识。
教学重点:
运用不同策略分析问题和解决问题步骤。
教学难点:
从条件想起与从问题想起分析数量关系。
教学过程:
一、回顾引入,唤起旧知。
问:同学们,在三年级我们已经学过一些解决问题的策略,想一想,在解决问题时可以怎样分析数量关系?(从条件想起,从问题想起)
过渡:在以前学习的基础上,今天这节课,我们继续来研究解决问题的策略。
二、自主探究,解决问题。
1、教学列表,整理条件和问题
(1)出示例1。
瞧,这是小芳家的果园,里面隐藏着哪些数学信息呢?谁来读一读。
(2)听完以后,你有什么感觉?
那你能想办法整理题目中的条件吗?
现在如果添上线就形成了表格。
比较列表整理后的信息与整理前的信息,你更喜欢哪一种?为什么?
小结:像刚才这样,运用列表的策略,按照果树的种类整理条件,将相关联的信息一一对应地整理在表格里,使条件更有序、简洁,题意更清晰。
板书:列表(一一对应)
(3)现在如果要求“桃树和梨树一共多少棵?”你还想像刚才那样把所有条件都整理出来吗?为什么?
电脑出示表格,口头整理。
小结:像这样,根据问题选择并整理条件将更有利于我们分析问题。
(4)(板书表格)现在对照表格中的.条件和问题,要求“桃树和梨树一共有多少棵?”你能根据数量之间的关系,说说解题思路吗?
同桌两人,说说你是怎样想的?提示可以从条件想起,还可以从问题想起。
小结:不管是从条件想起,还是从问题想起,都是求“桃树和梨树一共多少棵”,只要用“桃树的棵数+梨树的棵树=总棵树”。这就是解决这个问题的基本数量关系。
2、列式解答并检验。
(1)师:根据刚才的思路,想一想每一步可以怎样算,你会列式解答吗?做在作业纸上。
(2)交流列式方法。让学生列式计算时是怎样想的,每一步算出的分别表示什么。
(3)问:怎样知道答案是否正确呢?还要进行检验。
你想怎样检验,交流想法。板书一种。
小结:可以紧扣基本数量关系来进行检验。
(4)齐答。
3、回顾反思。回顾一下刚才我们解决这个问题的过程,(手指板书)
4、触类旁通
(1)那你能按照刚才的步骤来解决“杏树比梨树多多少棵”这个问题吗?
想一想,自己试着做在作业纸上。(一生列式解答在卡片纸上。)
(2)交流。
小结:通过解决刚才的问题,我们经历了解决问题的一般步骤:
弄清题意-分析数量关系-列式解答- 检验反思。
三、巩固策略,综合运用
1、第58页练一练1。春江小学三年级有3个班,四年级有2个班,五年级有4个班。(图中信息:五年级每班42人,三年级每班45人,四年级每班48人)。 (先整理题中的条件,再解答)
(1)三年级和四年级一共有多少人?
(2)四年级比五年级少多少人?
自己解决这两个问题吗?做在作业纸上。
交流:比较不同的列表整理方法,你更喜欢哪一种?为什么?
解决问题时你抓住了什么基本数量关系?做对了吗?
小结;运用列表策略时,一定要注意有序,一一对应。
2、第58页练一练2。
(1)江老师为学生表演购买服装。买2件长袖衬衫一共用去200元,买3件短袖衬衫一共用去180元,一件长袖衬衫比一件短袖衬衫贵多少元?你会求吗?口头列式计算。
(2)如果现在改变一下条件。现在与长袖衬衫对应的信息是?与短袖衬衫对应的信息吗?你会求吗?口头列式计算。
3、解决了这么多问题。你觉得解决问题的过程中,哪一步最关健?对于分析数量关系?你有哪些体会?
小结:可以从问题想起,也可能从条件想起,但不管怎样都要抓住解题的关键:分析基本数量关系。
四、全课小结:
今天进一步研究了“解决问题的策略”。通过学习,你有什么新的收获和体会?
解决问题的策略六年级数学教案 12
教学目标
1、使学生进一步掌握倍数和因数的相关知识,能正确判断奇数和偶数、素数和合数;能根据2、5、和3的倍数的特征,正确判断2、5、和3的倍数。
2、使学生进一步掌握探索简单搭配现象中的规律的方法,并能运用规律解决一些简单的实际问题。
3、使学生在解决实际问题的过程中,灵活运用合适的策略整理相关信息,感受画图和列表是解决问题的一种常用策略。
教学重点
复习已学内容并进一步的巩固已学知识
教学难点
如何帮助学生沟通知识的内在联系,加深对知识的体验和理解,提高综合运用知识分析问题,解决问题的能力。
设计理念
小组合作回忆-反思-整理
教学步骤
教师活动
学生活动
一、复习倍数和因数
(一)提问:你会把自然数的分类吗?
教师板书:
1、按是否是2的倍数,可分为偶数和奇数
偶数有:2、4、6、8、10......
奇数有:1、3、5、7、9......
2、按因数的个数,可以分三类:
(1)只有1和本身2个因数,是质数,有:2、3、5、7、11、13、17、19......
(2)除了1和本身,还有别的因数的,是合数,有:4、6、8、9、10、12、14......
(3)1既不是质数也不是合数
特别指出:2是唯一的质数中的偶数,其他的质数都是奇数,4是最小的合数。9、15等数既是奇数又是合数。
(二)巩固练习
1、在下面个数中,哪个数是哪个数的倍数,哪个数是哪个数的因数?
2、5、1、10、25
2、下面的数哪些是2的倍数,哪些是5的倍数,哪些是3的倍数?哪些既是2的倍数又是5的.倍数?哪些既是2的倍数又是3的倍数?哪些既是3的倍数又是5的倍数?
3、把下面的数分成两类,你想怎样分?
2、15、8、17、20
小组讨论交流,指名口答
指名学生有序地说一说。
学生独立完成,再指名交流
同桌互说,指名汇报
(只要分法合理教师就要给予肯定)
二、复习找规律
(一)提问:
1、用数字1、2、3,能写出多少个不同的三位数?说说你用的什么方法?
指出:我们思考问题时一定要做到有序思考。
2、用数字0、1、2呢?它们之间有什么区别?
(二)巩固练习完成书第116页第12题
读题后提问:
1、你知道这些菜中那些是蔬菜?哪些是荤菜?
2、你会搭配吗?
学生独立完成,集体交流:说说写数时要怎样才能做到既不重复也不遗漏?
学生独立完成,集体交流:重点说说它们之间的区别?
先和同桌说说,再指名汇报
学生独立完成后交流:说说怎么想的?
三、复习解决问题的策略
(一)提问:
1、我们已经学过哪些解决问题的策略?
2、这些策略对我们解决问题有什么好处?
(二)巩固练习
1、完成书第116页第13题
指名读题并提问:(1)当长8米时,宽应该是几米?能不能画图思考一下?
(2)、现在你能解决这个问题吗?
(3)、如果羊圈长6米呢?你能算出宽是多少米吗?
2、完成书第116页第14题
学生默读题目后讨论:
(1)第(1)题的数量关系式是什么?
(2)第(2)题的数量关系式又是什么?
小组交流后指名汇报
学生独立画图并思考,指名回答
学生独立列式计算交流结果
生独立列式计算交流结果时说说如何思考的?
学生独立思考指名回答(要求学生边画图边思考)
四、评价总结
通过这节课的复习,你有什么收获?
小组交流,汇报
五、作业设计
完成书第116页第14题
六、教后反思
整理、复习升与毫升,三角形、平行四边形和梯形,对称、平移和旋转
【解决问题的策略六年级数学教案】相关文章:
《解决问题的策略》教案04-25
解决问题的策略教学反思01-27
《解决问题的策略教学反思》04-29
解决问题的策略教学反思04-29
解决问题的策略五年级数学教案04-04
《解决问题的策略—转化》导学案12-18
解决问题的策略列举教学反思05-02
小学语文解决问题的策略教案04-27
解决问题的策略四年级数学教案04-09