六年级数学教案分数应用题

时间:2024-04-16 13:18:22 数学教案 我要投稿

六年级数学教案分数应用题

  作为一位兢兢业业的人民教师,总归要编写教案,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?以下是小编为大家整理的六年级数学教案分数应用题,欢迎阅读与收藏。

六年级数学教案分数应用题

六年级数学教案分数应用题1

  教学目标

  1、使学生进一步认识分数应用题的基本结构和相应的解题规律,更好地掌握分数应用题的解题思路与方法,能正确解答基本的分数乘除法应用题。

  2、进一步培养学生分析、推理的能力和解答分数应用题的能力。

  教学重难点

  进一步培养学生分析、推理的能力和解答分数应用题的能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 基本训练

  二、基本题练习

  三、综合练习

  四、课堂小结

  五、作业

  1、口算

  做练习十的12题

  2、揭示课题

  我们已经学习了基本的分数乘、除应用题,这节课我们将重点解答分数乘除应用题。

  3、基本训练

  (1)问:解答分数应用题一般是怎样想的`?

  (2)说单位“1”和数量关系式。(题目见幻灯)

  指出:确定了单位“1”和数量关系式就可以根据数量关系来解答分数应用题了。

  1、做练习十13题

  问:数量关系是怎样的?该两题的三个数量有什么相同点和不同点?解题时有什么相同点和不同点?

  2、做练习十第15题

  学生独立写出数量关系式并解答。

  强调:,单位“1”已知的类型直接用乘法解答,单位“1”未知的类型一般用方程解答。

  3、补充应用题

  (1)先说出哪个数量是单位“1”,再说出数量关系式。

  苹果数棵数是果树棵数的1/5

  (2)根据上面的条件,补充一个条件和问题

  使得它成为用乘法解答的应用题

  使得它成为用方程解答的应用题

  1、做练习十16题

  问:这两个问题在解法上有什么相同点和不同点?列式有什么不同?为什么不同?

  指出:求一个数是另一个数的几倍,和求一个数是另一个数的几分之几用除法计算。解答时要把单位“1”的数量当除数。

  这节课练习了什么内容?你进一步了解了哪些知识?

  练习十14题

  课后感受

  通过这节课的学习,学生们进一步了解了求一个数是另一个数的几分之几和几倍的问题也能归为单位“1”求。

六年级数学教案分数应用题2

  教学目标:

  使学生学会解答求一个数的几分之几是多少的一步计算的应用题。教学重难点:让学生掌握分数乘法应用题的基本数量关系。明确求一个数的几分之几是多少用乘法计算。

  教学策略:

  1.教学例1(求一个数量的几分之几是多少)。教师应把这道题的数量关系用线段图表示,帮助学生理解题意,学生在自己的练习本上画,培养分析此类题数量关系的方法.在线段图上标明题目的条件和问题,使学生明确哪部分表示100千克,哪部分表示吃了,哪部分表示要求的吃的千克数。

  教师:“吃了,是吃了哪个数量的'?”(是吃了100千克的。)

  “应该把哪个数量看作单位‘1’?”(应该把100千克看作单位“1”。)

  “那么,要求吃了100千克的是多少,应该怎样计算呢?根据什么列出算式?”

  (根据一个数乘以分数的意义,求一个数的几分之几是多少,要用乘法计算。)

  学生独立列式计算。解答后,再让学生分析一下题目里的数量关系。

  2、集体订正时,让两名学习比较好的学生说一说是怎样分析的。要特别注意说明以哪个数量为单位“1”,哪个数量占哪个数量的几分之几。3、要求学生记住分数乘法应用题的基本数量关系:“1”的量×对应分率=对应数量。

六年级数学教案分数应用题3

  重点:

  1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

  2.渗透对应思想。

  难点:

  1.理解这类应用题的解题方法。

  2.用线段图表示分数应用题的数量关系。

  教学过程:

  一、复习、质疑、引新

  1.说出、、米的意义。

  2.列式计算:

  20的是多少?6的是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

  二、探索、质疑、悟理

  1.出示例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了,吃了多少千克?

  ①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

  ②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

  ③画图:(课件一演示)补:把100千克当做什么?(单位1)

  画图说明:

  a.量在下,率在上,先画单位1

  b.十份以里分份,十份以上画示意图。

  C.画图用尺子,用铅笔。

  ④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

  学生可能会出现下面解答方法:

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:(千克)

  在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

  ⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

  2.巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

  订正时候强调1)把哪个数量看作单位1?

  2)为什么用乘法计算?

  3.学习例2

  例2小林身高米,小强身高是小林的.,小强身高多少米?

  在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

  (课件二演示)

  先画单位1

  再画单位1的几分之几

  画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

  在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

  列式:(米)

  答:小强身高米。

  4.改变例2

  改变例2的条件和问题成为下题(可让学生完成)。

  小强身高米,小林身高是小强的倍,小林身高多少米?

  改编后,可让学生独立画图完成。

  (米)

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

  四、训练、深化

  1.先分析数量关系,再列式解答

  ①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

  ②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

  2.提高题

  ①一桶油400千克,用去,用去多少千克?还剩多少千克?

  ②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

  五、课后作业:练习五1、2、3

  六、板书设计:

  分数乘法应用题

  100==80(千克)

  答:吃了80千克。

  (米)

  答:小强身高是米。

六年级数学教案分数应用题4

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍.

  2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔.

  4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的' ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

六年级数学教案分数应用题5

  本课题教时数:1本教时为第1教时备课日期9月17日

  教学目标

  进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的.数量关系和解题思路,能正确解答分数乘法应用题。

  教学重难点

  进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭题

  二基本联系

  三、合练习

  四、堂小结

  五、作业

  这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  1、提问:解答分数应用题的关键是什么?

  2、根据条件找单位1,说说数量关系式

  (题目见幻灯课件)

  3、解答应用题

  例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的,已经行了多少千米?

  问:这道题可以怎样想?为什么用乘法算?

  1、对比练习

  做复习题第9题

  问:这两题有什么相同的地方和不同的地方?

  在解法上有什么相同的地方?

  2、做复习第10题

  让学生说说是怎么想的?

  追问:第一步要求什么?把哪个数量看作单位1第二步求什么?又是把哪个数量看作单位1?

  3、做复习第11题

  4、做复习第12题

  讨论:有什么办法知道哪一辆车离中点近一些?

  这堂课复习了什么内容?分数乘法应用题的解题关键是什么?基本数量关系是怎样的?连续求一个数的几分之几的分数连乘应用题要怎样解答?

  复习第7、8题

  课后感受

  要让学生学会想到有困难时可借助线段图帮助理解。

  授课日期9月23日

六年级数学教案分数应用题6

  教学目标

  1、认识分数应用题的特点,理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  2、认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。

  教学重难点

  理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、巩固练习

  1、出示复习题(见幻灯课件)

  问:把哪个量看作单位1?题中每个分数表示的意义是什么?

  2、做15页复习题

  问:为什么要用乘法计算?这里的一个数和分数相乘表示什么意义?

  3、引入新课--学习分数应用题

  1、教学例1

  (1)出示例1,学生读题

  找条件,想问题,画线段图,想方法

  (2)分析两种不同的方法

  找相同点、不同点以及存在的联系

  (3)巩固练习做17页练一练1

  2、教学例2

  (1)出示例1,学生读题

  找条件、想问题、画线段图

  (2)列式并说说想的过程

  重点指出把谁看作单位1

  3、教学想一想

  (1)读题、思考、画线段图

  问把谁看作单位1

  (2)列式

  (3)问:算式中的3/2是什么分数?

  (4)说明:条件里一个数量是另一个数量的几分之几,可以是假分数,也可以是真分数。

  (5)做练一练2

  4、小结

  问:今天学习的'分数应用题都告诉我们哪两个条件,要求的是什么问题?分析数量关系时都是要先确定哪个数量?

  1、说一说下面各题里单位1的量

  (见幻灯课件)

  2、做练习三第1题

  3、做练习三第5题

  问:这三题有什么相同的地方?都用什么方法?

  4、作业

  练习三第2~4

  课后感受

  初次接触应用题,学生在说想法上还存在一点问题,常常是明白但不知道该怎么表达。特别是数量关系方面,可加强说想法的练习,形式也可多样些。

六年级数学教案分数应用题7

  教学内容:

  教科书第81~82页的第4~7题,练习二十一的第4~6题.

  教学目标:

  通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及它们之间的内在联系.进一步提高用算术方法和用方程解应用题的能力.

  教学过程:

  一、复习一般的两步计算的分数应用题

  1.教师出示第97~98页的第3题:学校买了一批新书,其中故事书有30本,科技书有18本,共占这批新书的.这批新书有多少本?

  指定一名学生口述题目的条件和问题,全体学生在练习本上解答.解答完后指名学生口述分析解答过程.

  2.让学生做练习二十六的第4题.

  二、复习分数乘、除法应用题

  1.解答第97页的第4题.

  (1)出示第4题第(1)、(2)题.

  指名学生口述它们的条件和问题.教师在黑板上画出线段图.

  1125-1125×解法一:x-x=450

  解法二:450÷(1-)

  让学生独立完成,并说出是怎样解答的.

  教师板书出来(见上图).

  (2)观察比较.

  引导学生从线段图、解法上进行比较,使学生明确:第(1)题中单位“1”的数量是已知的,要求单位“1”的几分之几是多少,用乘法计算.第(2)题中剩下的公路长是已知的,而单位“1”是未知的,求单位“1”,要按照题意找等量关系列方程解,或用除法计算.

  2.让学生做练习二十六的第5题.

  3.解答第82页的第5题.

  (1)出示第(1)、(2)题.

  让学生自己读题,并进行解答.

  订正时,教师出示线段图,指名说解题思路.教师在图的下面板书出算式.

  (1)停车场有18辆大客车,(2)停车场有18辆大客车,小汽车的辆数比大客车大客车的辆数比小汽车多.小汽车有多少辆?少.小汽车有多少辆?

  18+18×解法一:x-x=18

  解法二:18÷(1-)

  (2)比较第(1)、(2)题.

  让学生说说它们有什么相同点和不同点,各把谁看作单位“1”.使学生明确:第(1)题中单位“1”的数量是已知的.,要求比已知数多的数是多少,用乘法计算;第(2)题中单位“1”的数量是未知的,要按照题意找等量关系列方程解答,或用除法解答.

  (3)解答、比较第(3)、(4)题.

  仿照第(1)、(2)题的复习方法进行.

  (3)停车场有21辆小汽车,(4)停车场有21辆小汽车,大客车的辆数比小汽车小汽车比大客车多.

  少.大客车有多少辆?大客车有多少辆?

  三、复习工程问题

  1.教师出示第82页的第6题.让学生解答.

  2.分析、比较第(1)、(2)题.

  让学生回答下面的问题

  (1)第(1)题的路程、两船的速度各是多少?

  (2)第(2)题的路程、两船的速度各用什么表示?

  (3)这两题的数量关系是否相同?

  通过对比使学生认识到:两道题的思路是一致的,数量关系基本相同,都是用路程除以速度和.只是第(2)题的路程和速度不是用具体数量来计算,而是用单位“1”和“”、“”来表示的.

  四、作业

  练习二十一的第6、7题.

六年级数学教案分数应用题8

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的`百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

六年级数学教案分数应用题9

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的`意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

六年级数学教案分数应用题10

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  (略)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的.,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,________________,桃树有多少棵,

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

六年级数学教案分数应用题11

  教学内容:

  教科书15页,例2及做一做 ,练习四8─10题。

  教学目的:

  (1)、会画线段图分析分数乘法两步应用题的数量关系。

  (2)、掌握分数两步连乘应用题解答方法,并能正确解答。

  (3)、进一步培养学生初步的逻辑思维能力。

  教学重点:分析分数乘法两步应用题的数量关系。

  教学难点:抓住知识关键,正确、灵活判断单位1。

  教学过程:

  (一)、复习引入:

  1、先说说各式的意义,再口算出得数。

  ╳ ╳

  2、指出下面含有分数的句子中,把谁看作单位1。

  (1)乙数是甲数的 。(甲数)

  (2)乙数的 相当于甲数。(乙数)

  (3)大鸡只数的 等于小鸡的只数。(大鸡)

  (4)大鸡的只数相当于小鸡的 。(小鸡)

  (二)、探究新知:

  1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  (1)审题:

  全体默读,再指名读,说出已知条件和问题。

  师生边讨论边画出线段图。

  先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

  然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

  小亮

  18元

  ?元

  ?元

  小华

  小新

  (2)分析数量关系:

  引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

  也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

  (3)确定每一步的算法,列出算式。

  怎么求小华的`钱数?

  根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

  板书:18╳ =15(元)

  怎么求小华的钱数?

  根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

  板书:15╳ =10(元)

  把上面的分步算式列成综合算式:

  板书:18╳ ╳ =10(元)

  (4)检验写答:

  答:小新储蓄了10元。

  2、做一做。

  学生独立画出线段图,教师巡视指导。

  3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

  (三)、课堂练习:

  独立完成练习四的第8、9、10题。

  板书设计:

  例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  小亮

  18元

  ?元

  ?元

  小华

  小新

  18╳ =15(元)

  15╳ =10(元)

  18╳ ╳ =10(元)

  答:小新储蓄了10元。

六年级数学教案分数应用题12

  教学目标

  1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。

  2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。

  3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。

  教学重难点

  进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习铺垫

  二、教学新课

  三、巩固练习

  四、课堂小结

  五、作业

  1、复习

  出示复习题(见幻灯)

  问:解答这道题是怎样想的?为什么列方程解?

  2、揭示课题

  解答分数应用题,要先确定单位“1”,再找出题目中的'数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

  1、教学例2

  (1)学生读题,找条件和问题。

  (2)找关键句,说数量关系。

  (3)学生画线段图。

  (4)学生独立列式、计算。

  (5)小结:这道题的解题思路是怎样的?

  2、教学试一试。

  (1)学生读题,找条件和问题。

  (2)找关键句,说数量关系。

  (3)学生画线段图。

  (4)学生独立列式、计算。

  3、小结

  问:通过上面的学习,你认为解答分数应用题该怎么去思考?

  1、做练习十第6题

  2、做“练一练”

  3、做练习十第9题

  问:列方程解是怎样想的?

  这节课学习了什么内容?解答分数应用题一般要怎样想?今天学习的这类应用题可以有哪些方法解答?

  练习使7、8、10

  课后感受

  例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。

六年级数学教案分数应用题13

  学材分析

  综合运用知识解答有关应用题

  学情分析

  学生已有一定的基础

  学习目标

  1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。

  2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。

  3、通过运用知识解题,提高解决实际问题的能力。

  导学策略

  导练法、迁移法、例证法

  教学准备

  小黑板、投影

  导学流程设计:导入--探究新知--巩固练习--总结

  教 师预设

  学 生活动

  一、 导入

  谈谈学校的体育达标情况。

  出示;体育达标率为99.7%

  从这个条件,你能知道什么?你还想到了什么?

  一、揭题:分数、百分数应用题

  二、教学新课

  (一)求分率

  1、出示学校体育达标情况:优秀650人,良好400人,合格250人。

  2、根据这些条件,你可以提出哪些不同的有关分数、百分数的问题?

  3、同桌合作,讨论完成。

  4、反馈

  (1)一个数是另一个数的几(百)分之几?

  例如:优秀率?650(650+400+250)=50%

  (2)一个数比另一个数多(少)几(百)分之几?

  例如:优秀比良好人数多几分之几?(650-400)400=5/8

  (二)求单位1或求分率所对应的量

  1、把问题当成条件,根据条件编分数、百分数应用题

  优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。

  2、小组合作完成

  3、反馈,并解答,想想有没有另外方法可以解答。

  ①在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?

  130050%=650(人)(说说你的揭题思路)

  ②在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?

  65050%=1300(人)

  ③在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?

  650(1+5/8)=400(人)(说说你的解题思路)

  ④在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?

  400(1+5/8)=650人

  4、观察这些应用题,找找相同点与不同点

  ①有共同的数量关系单位1分率=分率对应的量

  ②单位1已知或未知

  5、你认为在解这类应用题是要注意什么?

  6、师小结:找准单位1的量,根据已知与未知判断方法。列出题中数量间的.相等关系。

  (三)练习

  1、对比练习

  ①学校运动队有30名男队员,女队员比男队员少1/6,女队员比男队员少多少人?301/6=5人

  (说说另外的方法)

  ②学校运动队有25名女队员,女队员比男队员少1/6,女队员比男队员少多少人?

  25(1-1/6)-25=5(人)(说说另外的方法)

  通过练习,你想说什么?(看清单位1,找准关系。)

  2、一题多解

  陈老师看一本200页的故事书,前5天看了1/4,照这样计算,还要几天可以看完?

  你能用几种方法就用几种方法,先独立完成,不能解答时与同桌交流,比比谁的方法多,谁的方法好?

  师总结:在解答时可以不用具体数量,直接用分率求,也可以用具体数量进行计算。通过比较可以发现用分率求比较简单。

  3、专题研究

  某种股票进期走势如下

  日期13日14日15日16日

  涨跌+5%+5%-5%-5%

  某股民用10000元炒该股,你认为该股民从13日购入到16日为止是亏还是盈,并说明理由。

  (四)课堂总结

  谈谈通过这节课的复习,说说你的想法

六年级数学教案分数应用题14

  教学目标

  1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。

  2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。

  教学重点和难点

  找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。

  教学过程设计

  (一)复习基础知识

  教师谈话:我们已经复习了求一个数是另一个数的几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的.几分之几(百分之几)是多少,求这个数这三类应用题。这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。(板书:分数,百分数应用题复习)

  投影出示如下习题:

  1、读题列式并按要求改编题:

  ①一本书100页,读了60页,读了这本书的几分之几?

  学生读题:

  如果把问题改成读了百分之几应如何解答?

  样列式计算?

  ③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板

  2、补充问题。

  (1)六一班有男生30人,女生20人,_______________?

  可以求什么?从最基本的想起。

  学生读题后补充问题并列式:

  ①女生是男生的几分之几(百分之几?)

  ②女生比男生少几分之几(百分之几?)

  ③男生是女生的几分之几(百分之几?)

  ④男生比女生多几分之几(百分之几?)

  可以求什么?从最基本的想起,

  学生读题后补充问题并列式:

  ①女生有多少人?

  ②全班共有多少人?

  ③男生比女生多多少人?

  ④女生比男生少多少人?

  3、回答问题。

  师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。)

  ③甲是甲乙差的4倍。

  ⑤乙是单位1。

  4、小结。

  通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?

  (二)画线段图分析解答

  投影出示如下练习:

  1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?

  ①学生读题;

  ②学生自己画图列式;

  ③订正画图;

  ④指名列式。为什么不是350(1-30%)?

  ⑤那为什么也不是35030%?

  2、修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?

  3、一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?

  指名学生到黑板上画图。

  4、一根绳子截去20%后,再接上6m,结果比原来的绳子长了1.5m,这根绳子原来长多少米?

  (三)综合练习

  1、题组训练(只列式不计算)

  共多少吨?

  箱重量正好相等,原来两箱桔子各有多少千克?

  老师用投影出示下图帮助学生理理解题意。

  学生课后完成。

  课堂教学设计说明

  本节课教学可分为三部分。

  第一部分,复习求一个数是另一个数的几分之几(百分之几),求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这一类应用题。通过补充问题这种方式,使学生能够把分数、百分数应用题的数量关系和解题方法进行复习,并且打开解应用题的思路,充分调动学生的积极性。

  第二部分是画线段图分析应用题。这部分的应用题具有典型性,要求学生能够画图进行分析,通过线段图找准量和率的对应关系,能够顺利地解决分数、百分数应用题。

  第三部分是深入理解三种应用题的解题思想,综合应用知识。这部分应用题比较难,主要是为了让学生能够综合应用所学过的知识,进一步提高学生的解题能力,让学有余力的学生有发散思维的机会,调动他们的积极性。

  板书设计

六年级数学教案分数应用题15

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  1.第一题

  解法(一)

  解法(二)

  2.第二题

  解:设篮球有 个.

  解法(一)

  解法(二)

  解法(三)

  3.第三题

  解法(一)

  解法(二)

  4.第四题

  解:设篮球 个.

  解法(一)

  解法(二)

  解法(三)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的.数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

【六年级数学教案分数应用题】相关文章:

六年级数学教案:分数乘法应用题01-20

分数除法应用题教学反思12-29

六年级数学《分数应用题练习》教案08-26

数学教案:分数02-05

《真分数和假分数》数学教案02-07

《分数除法》数学教案02-06

数学教案:《分数的意义》02-06

数学教案:分数乘法02-17

六年级数学教案:分数的意义02-04