- 相关推荐
北师大版七年级上册数学教案设计(精选14篇)
在教学工作者实际的教学活动中,常常要根据教学需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案需要注意哪些格式呢?下面是小编精心整理的北师大版七年级上册数学教案设计,欢迎阅读与收藏。
七年级上册数学教案设计 1
教学目标
1.会利用合并同类项的方法解一元一次方程。(重点)
2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用。(难点)
教学过程
一、情境导入
1.等式的基本性质有哪些?
2.解方程:
(1)x-9=8;
(2)3x+1=4。
3.下列各题中的两个项是不是同类项?
(1)3xy与-3xy;
(2)0.2ab与0.2ab;
(3)2abc与9bc;
(4)3mn与-nm;
(5)4xyz与4xyz;
(6)6与x。
4.能把上题中的同类项合并成一项吗?如何合并?
5.合并同类项的法则是什么?依据是什么?
二、合作探究
探究点一:利用合并同类项解简单的一元一次方程
例1解下列方程:
(1)9x-5x=8;
(2)4x-6x-x=15。
解析:先将方程左边的同类项合并,再把未知数的系数化为1。
解:(1)合并同类项,得4x=8。
系数化为1,得x=2。
(2)合并同类项,得-3x=15。
系数化为1,得x=-5。
方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式。
探究点二:根据“总量=各部分量的和”列方程解决问题
例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?
解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程。
解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个)。
答:黑色皮块有12个,白色皮块有20个。
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解。此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来。
三、板书设计
1.用合并同类项的方法解简单的`一元一次方程。
解方程的步骤:
(1)合并同类项;
(2)系数化为1(等式的基本性质2)。
2.找等量关系列一元一次方程。
列方程解应用题的步骤:
(1)设未知数;
(2)分析题意找出等量关系;
(3)根据等量关系列方程;
(4)解方程并作答。
教学反思
本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫,教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.
七年级上册数学教案设计 2
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体。
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的.形象认识,感知知识来源于生活。如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义。
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?
观察、讨论。让学生共同体会“点动成线、线动成面、面动成体”。
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理。”说说你对上述这段叙述的理解和体会。
2、阅读教科书第119页的实验与探究,并思考有关问题。
七年级上册数学教案设计 3
教学目标
【知识与能力目标】
1、巩固理解有理数的概念。
2、掌握数轴的意义及构成特点,明确其在实际中的应用。
3、会用数轴上的点表示有理数。
【过程与方法目标】
【情感态度价值观目标】
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例。
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点。
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形。
不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度。
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示。
5、归纳:
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1,先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,-10/3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是:
(2)数轴上表示-5的.点在原点的侧,与原点的距离是个长度单位。
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点。
(4)如图,a、b为有理数,则a0,b0,ab。
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
七年级上册数学教案设计 4
教学目标和要求:
1、理解单项式及单项式系数、次数的概念。
2、会准确迅速地确定一个单项式的系数和次数。
3、初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4、通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学过程:
一、复习引入:
1、列代数式
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1、单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2、练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3、单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的`概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念。
单项式的系数:单项式中的数字因数叫做这个单项式的系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4、例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。①x+1;②;③πr2;④-a2b
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确
强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5、游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的`思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
七年级上册数学教案设计 5
教学目标和要求:
1、通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。
2、通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。
3、初步体会类比和逆向思维的数学思想。
教学重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
教学过程:
一、复习引入:
观察以上所得出的四个代数式与上节课所学单项式有何区别。
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。)
二、讲授新课:
1、多项式:
由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constantterm)。例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5。其中5是常数项。
一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式3x2?2x+5是一个二次三项式。
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号。
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)
2、例题:
例1:判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1。
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)
例2:指出下列多项式的项和次数:
(1)3x-1+3x2;(2)4x3+2x-2y2。
解:(1)三项,二次;(2)三项,三次。
例3:指出下列多项式是几次几项式。
(1)x3-x+1;(2)x3-2x2y2+3y2。
解:(1)三次三项式;(2)四次三次式。
例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的.条件。
解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1。
(让学生口答例2、例3,老师在黑板上规范书写格式。讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression)。例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。)
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。(让学生小结,师生进行补充。)
教学后记:
从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点。掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性。最后列举几个例子,与学生一起完成。教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成。要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识。
七年级上册数学教案设计 6
教学目标:
知识目标
使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标:
联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标:
利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重难点:
重点
使学会解比例的方法,进一步理解和掌握比例的基本性质。
难点
体现解比例在生产生活中的广泛应用。
教学过程:
教学预设个性修改
目标导学,复习激趣,自主合作,汇报交流,变式训练。
创境激疑一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?
合作探究二、探索新知
1、出示埃菲尔铁挂图
2、出示例题
(1)读题。
(2)从这道题里,你们获得了哪些信息?
(3)在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)不知道的'这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)
(12)为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)出示例3,问:这题与刚刚那个比例有哪些不同?
(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)在这个比例里,哪些是外项?哪些是内项?
(4)解答(提问:你们是怎么解答的?)检验。
(5)拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
总结这节课主要学习了什么内容?
作业布置教材43页5题
板书设计解比例
例3、解比例=
解:2.4=1.5×6
=()×()
()
教学札记
七年级上册数学教案设计 7
【学习目标】
1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】
识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的.图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1、几何图形
(1)仔细观察图4、1—1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4、1—2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2、立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4、1—4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3、平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4、1—5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……
思考:立体图形与平面图形是两类不同的几何图形,它们的`区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
《4、1、2点、线、面、体》同步四维训练
知识点一:几何体的构成
1、下列结论正确的是(C)
①圆柱由3个面围成,这3个面都是平面;
②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;
③球仅由1个面围成,这个面是平面;
④正方体由6个面围成,这6个面都是平面。
A、①②B、②③C、②④D、①④
《4、1、2点、线、面、体》同步练习含解析
一、单选题(共12题;共24分)
1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的
A、正方形
B、等腰三角形
C、圆
D、等腰梯形
2、下面现象能说明“面动成体”的是
A、旋转一扇门,门运动的痕迹
B、扔一块小石子,小石子在空中飞行的路线
C、天空划过一道流星
D、时钟秒针旋转时扫过的痕迹
3、下列说法中,正确的是
A、棱柱的侧面可以是三角形
B、四棱锥由四个面组成的
C、正方体的各条棱都相等
D、长方形纸板绕它的一条边旋转1周可以形成棱柱
七年级上册数学教案设计 8
学习目标:
知识:对顶角邻补角概念,对顶角的性质。
方法:图形结合、类比。
情感:合作交流,主动参与的意识。
学习重点:
对顶角的概念、性质。
学习难点及突破策略:
“对顶角相等”的探究;小组讨论
教学流程:
【导课】
同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。
【阅读质疑,自主探究】
请大家阅读课本P,回答以下问题(自探提纲):
1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?
2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?
3、对顶角有什么性质?你是怎样得到的?
【多元互动,合作探究】
同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的'问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:
1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。
2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。
3、“对顶角相等”的推导过程。
七年级上册数学教案设计 9
一、教学目标:
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
二、教学难点:
两个负数大小的比较。
三、知识重点:
绝对值的概念。
四、教学过程:
(一)设置情境。
1、引入课题。
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:
(1)用有理数表示黄老师两次所行的路程。
(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
2、学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。
3、观察并思考:
画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
4、学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
例如,上面的问题中|20|=20|-10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
(二)合作交流。
1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
-3,5,0,+58,0.6。
2、要求小组讨论,合作学习。
3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。
(三)巩固练习:教科书第15页练习。
1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
(1)把14个气温从低到高排列。
(2)把这14个数用数轴上的点表示出来。
3、观察并思考:
(1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?
(2)学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的'顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
4、想象练习:
想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
5、课堂练习例2,比较下列各数的大小。(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式。
6、练习:第18页练习。
(三)小结与作业。
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
(四)本课作业。
1、必做题:教产书第19页习题1,2,第4,5,6,10
2、选做题:教师自行安排。
五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1、情景的创设出于如下考虑:
(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。
(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。
4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级上册数学教案设计 10
教学目的
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点
1、重点:解含有括号的一元一次方程的`解法。
2、难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=3283+x=(45+x)y—5=2y+1问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的`次数是1,这样的方程叫做一元一次方程。
例1、判断下列哪些是一元一次方程
x=3x—2x—=—1
5x2—3x+1=02x+y=1—3y=5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x—[3(x+1)—(1+4)]=1
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,1、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6。
2、第1题。
七年级上册数学教案设计 11
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:—3,—2,—2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课
(1)像—3,—2,—2.7%这样的数(即在以前学过的0以外的数前面加上负号“—”的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2,0.5,…一个数前面的“+”、“—”号叫做它的'符号,这种符号叫做性质符号。
(2)中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的。海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为—155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)请学生解释课本中图1.1—2,图1.1—3中的正数和负数的含义。
(7)你能再举一些用正负数表示数量的实际例子吗?
(8)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“—”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“—”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
八、作业布置
课本第5页习题1.1复习巩固第1、2、3题。
七年级上册数学教案设计 12
教学目标
1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数。
2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系。
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数。
难点
识别单项式的系数和次数。
教学过程
一、创设情境,导入新课
师:出示图片。
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢?
二、推进新课
(一)用含字母的`式子表示数量关系。
师:出示第54页例1。
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的答案,但可能不会太规范,教师总结。
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)。
师生共同完成例2,进一步体会用字母表示数的意义。
巩固练习:第56页练习。
(二)单项式的概念。
师:出示问题。
引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?
生:通过观察、对比、讨论得出,各式都是数或字母的积。
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式。
巩固练习:下列各式是单项式的式子是___________。
七年级上册数学教案设计 13
教学过程
知识整理
1、回顾本单元的学习内容,形成支识网络。
2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
1、什么叫比?比例?比和比例有什么区别?
2、什么叫解比例?怎样解比例,根据什么?
3、什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
4、什么叫比例尺?关系式是什么?
基础练习
1、填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的`周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/3
40/24=5/x
3、完成26页2、3题。
综合练习
1、A×1/6=B×1/5A:B=():()
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3、用5、2、15、6四个数组成两个比例():()():()
实践与应用
1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
板书设计:整理和复习
1、比例的意义。
2、比例比例的'性质。
3、解比例。
4、正反比例正方比例的意义。
5、正反比例的判断方法。
6、比例应用题正比例应用题。
7、反比例应用体题。
教学要求
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
七年级上册数学教案设计 14
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?
向上看向前走200米电梯上升15层我在银行存入了500元
二、复习旧知
我们已经学习了负数,你能举几个负数的例子吗?
通过前面内容的学习,你还知道哪些知识?
三、学习新知
1.教学例3。
出示例3的情境:小明向东走200米,小军向西走200米。
教师问:你准备怎样来表示这两个不同意思的.量?
学生1:向东走200米记作+200米,向西走200米就记作-200米。
学生2:向西走200米记作+200米,向东走200米就记作-200米。
教师对这两种记法都应给予肯定。
学生独立试一试
(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?
(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?
学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。
(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。
项目父母工资电话费父母奖金水、电、气费伙食费
收支情况(元)4500-1301000-280-1750
2.教学例4。
教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)
月份7月8月9月10月11月12月
盈亏情况(元)+6500-27000-750+9500+16700
教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)
教师:从表中你获得了哪些信息?
学生小组内交流,然后全班汇报。
教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。
3.讨论生活中的负数。
教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。
教师:存折上的-800表示什么意思?
学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元
电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
四、课堂练习
1.下图每段表示1m,小丽刚开始的位置在0处。
(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为()
(2)如果小丽的位置是+8m,说明她是从0点向()行了()m。
(3)如果小丽的位置是-6,说明她是从0点向()行了()m。
(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为()m。
(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为()m。
2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作()。
3.如果-20分表示比平均分低20分,那么+15表示()
4.如果比规定任务多做5个记作+5个,那么-5表示()
5.2.如果在银行存入10000元记作+10000,那么-5000表示()。
五、自学“你知道吗?”
学生阅读教科书92页内容,说说有什么收获?
六、课堂小结
通过今天的学习,你有什么收获?
七、课堂作业
练习二十二第6、7题。
家庭作业:90页课堂活动第3题,练习二十二第5、8题
板书设计:
认识具有相反意义的量及其简单应用
向东走200米记作+200米,向西走200米就记作-200米
正数、负数来表示相反意义的量。
【七年级上册数学教案设计】相关文章:
苏教版七年级上册《夏》的教案设计05-01
七年级语文上册《理想》教案设计05-01
七年级语文上册《童趣》教案设计05-01
七年级语文上册《春》教案设计05-01
七年级语文上册教案设计:诫子书02-02
七年级英语上册全册教案设计05-04
七年级上册语文《山市》教案设计04-08
七年级上册语文《在山的那边》的教案设计01-02
新课标人教版七年级上册《风筝》教案设计04-25