《数轴》七年级数学教案

时间:2024-09-23 11:47:11 欧敏 数学教案 我要投稿

《数轴》七年级数学教案(通用16篇)

  作为一名教学工作者,就有可能用到教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?下面是小编精心整理的《数轴》七年级数学教案,欢迎阅读,希望大家能够喜欢。

《数轴》七年级数学教案(通用16篇)

  《数轴》七年级数学教案 1

  教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  课堂教学过程

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示—5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例变式练习

  例1画一个数轴,并在数轴上画出表示下列各数的点:

  例2指出数轴上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的`点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面数轴上:

  (1)分别指出表示—2,3,—4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面数轴上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

  (1){—5,2,—1,—3,0};(2){—4,2.5,—1.5,3.5};

  《数轴》七年级数学教案 2

  一、教学目标

  【知识与技能】

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  【过程与方法】

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  【情感、态度与价值观】

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  【教学重点】

  数轴的三要素,用数轴上的点表示有理数。

  【教学难点】

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的`实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点A,B,C,D,E表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

  《数轴》七年级数学教案 3

  教学目标

  1、了解数轴的概念和数轴的画法,掌握数轴的三要素;

  2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

  3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

  教学建议

  一、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  二、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

  定义三要素应用

  数形结合

  规定了原点、正方向、单位长度的直线叫数轴原点

  正方向

  单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大。在理解并掌握数轴概念的`基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

  三、教法建议

  小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

  关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

  四、数轴的相关知识点

  1、数轴的概念

  (1)规定了原点、正方向和单位长度的直线叫做数轴。

  这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

  (2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

  以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

  2、数轴的画法

  (1)画直线(一般画成水平的)、定原点,标出原点“O”。

  (2)取原点向右方向为正方向,并标出箭头。

  (3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

  (4)标注数字时,负数的次序不能写错,如下图。

  3、用数轴比较有理数的大小

  (1)在数轴上表示的两数,右边的数总比左边的数大。

  (2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

  《数轴》七年级数学教案 4

  教学目标

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点

  数轴的概念和用数轴上的点表示有理数

  教学过程(师生活动) 设计理念

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的.名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1、 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2、 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3、 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4、 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1、 数轴的三个要素;

  2、 数轴的作以及数与点的转化方法。

  本课作业

  1、必做题:教科书第18页习题1.2第2题

  2、选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  《数轴》七年级数学教案 5

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1.学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2.联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1.马路用什么几何图形代表?(直线)

  2.文中相关地点用什么代表?(直线上的点)

  3.学校大门起什么作用?(基准点、参照物)

  4.你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2.数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1.什么样的直线叫数轴?它具备什么条件。

  2.如何画数轴?

  3.根据上述实例的经验,“原点”起什么作用?

  4.你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1.判断下列图形是否是数轴。

  2.口答:数轴上各点表示的数。

  3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1.什么是数轴?

  2.数轴的“三要素”各指什么?

  3.数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1.下列命题正确的是()

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的'点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。

  4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  五、板书

  1.数轴的定义。

  2.数轴的三要素(图)。

  3.数轴的画法。

  4.性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1.什么样的直线叫数轴?

  定义:规定了_______、_______、_______的直线叫数轴。

  数轴的三要素:_______、_______、_______。

  2.画数轴的步骤是什么?

  3.“原点”起什么作用?_______

  4.你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1.画一条数轴

  2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的_______边,与原点的距离是_______个单位长度;表示数-a的点在原点的_______边,与原点的距离是_______个单位长度.

  练习:

  1.数轴上表示-3的点在原点的_______侧,距原点的距离是_______;表示6的点在原点的_______侧,距原点的距离是_______;两点之间的距离为_______个单位长度。

  2.距离原点距离为5个单位的点表示的数是_______。

  3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是_______。

  附:目标检测

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

  3.画数轴,观察数轴,在原点左边的点有_______个。

  4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  《数轴》七年级数学教案 6

  设计理念

  这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的思想方法。

  教学目标

  1、知识与技能

  (1)掌握数轴的三要素,能正确画出数轴。

  (2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  2、过程与方法

  使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  3、情感态度与价值观

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  重点

  正确掌握数轴画法和用数轴上的点表示有理数。

  难点

  有理数和数轴上的点的对应关系。

  教学过程

  1、创设情境:让学生根据家乡的地图尝试画出自己家相对沙墩中学的位置,让学生初步体会生活中的平面问题可以简化为具体的直线问题来研究。

  2、让学生在一条直线上画出第一排八名同学的位置各个物体的.相对位置,从而使学生对本节课的学习目的有一个初步的认识。若以第三名同学为中心,以他的左边为负,右边为正表示出其它同学

  3、让学生仔细观察温度计,对比学生所画图形与温度计的区别,学生会发现,温度计上有0刻度,0刻度以上为正数,0刻度以下为负数,那我们能否用类似温度计的图形来表示有理数呢?从而引出课题——数轴。

  《数轴》七年级数学教案 7

  教学目标:

  1、正确理解数轴的意义,理解数轴的三要素。

  2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

  3、理解相反数的意义及求法。

  4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

  重点难点

  1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

  2、有理数和数轴上的的点的对应关系。

  教学方法

  合作探究交流

  学法指导

  观察归纳概括

  教学过程

  一、情景引入:

  (1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

  (2)我们能否用类似温度计的图形表示有理数呢?

  二、讲授新课:认真阅读课本第43页至45页,完成下列问题

  (1)画一条水平直线,在直线上取一点O(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。

  于是,+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1、5的'点表示,任何有理数都可以用数轴上的一个点来表示。

  三、例题讲解、巩固提高

  例1、如图,指出数轴上A、B、C、D各点表示什么数?

  A D CB

  –2 –1 0 1 2 3

  解:点A表示—2;点B表示2;点C表示0;

  点D表示—1

  练习:画出数轴并用数轴上的点表示下列个数:

  —5,0,5,—4,—、

  四、继续探究

  2与—2有什么相同点与不同点?它们在数轴上的位置有什么关系?5与—5,与–呢?

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数、特别地0的相反数是0。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等、

  练习:1、5的相反数是▁▁;▁▁的相反数是—3、5。

  议一议

  数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?

  数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。

  练习:比较大小:—3▁5;0 ▁—4;—3 ▁—2、5。

  合作交流

  (1)什么是数轴?怎样画数轴。

  (2)有理数与数轴上的点之间存在怎样的关系?

  (3)什么是相反数?怎样求一个数的相反数?

  (4)如何利用数轴比较有理数的大小?

  随堂练习:

  (1)下列说法正确的是()

  A、数轴上的点只能表示有理数

  B、一个数只能用数轴上的一个点表示

  C、在1和3之间只有2

  D、在数轴上离原点2个单位长度的点表示的数是2

  (2)语句:①—5是相反数?②—5与+3互为相反数③—5是5的相反数④—5和5互为相反数⑤0的相反数是0⑥—0=0。上述说法中正确的是()

  A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥

  (3)大于—4而小于4的整数有▁▁▁▁▁▁。

  (4)用“﹤”或“﹥”号填空

  ①—5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1

  (5)写出下列各数的相反数

  3、4,—3,0,a,2a—3。

  《数轴》七年级数学教案 8

  教学目标:

  1.知道数与数轴上的点的关系及原点的含义。

  2.理解单位长度所表示的意义。

  3.会原点“0”的位置的选择。

  教学重点:

  1.会用数轴上的点表示数。

  2.在数轴上表示负小数。

  教学过程:

  一、进一步认识数轴

  1.出示数轴:(小组讨论)

  2.提问:

  1)在原点右边表示的是什么数?(正数)

  2)在原点左边表示的是什么数?(负数)

  3)原点“0”表示的是什么意思?(是表示正数和负数的点的分界点)

  4)单位的长度指的是什么?(取适当的长度作为一个单位长度)

  二、探究练习

  1.填空:

  表示+3的.点在原点的( )边,离开原点( )个单位长度。

  表示-5的点在原点的( )边,离开原点( )个单位长度。

  2.在数轴上找出表示-4,+3,-1,+5,-5的点,并分别用字母A、B、C、D、E表示。

  3.写出下面数轴上A、B、C、D、E各点分别表示什么数。

  A表示( ) B表示( ) C表示( ) D表示( ) E表示( )

  4.集体讨论:

  1)数轴与它所放的位置有关系吗? (与放的位置无关)

  2)原点的位置有可选性吗?(举例)(原点位置选择的任意性)

  注意:原点位置选择的任意性。

  三、拓展练习:

  1.选择题:

  1)数轴上A表示( ) B表示( ) C表示( ) D表示( )

  A -1 B +2 C -5 D +5

  2)数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点距离原点都是20,则这两个点所表示的数分别是( )。

  A +10和-10 B +20和-20 C +5和-5 D 无法确定

  3)数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点距离是20,则这两个点所表示的数分别是( )。

  四、小结。

  《数轴》七年级数学教案 9

  教学目标:

  1.借助数轴比较正负数的大小。

  2.联系生活里的实际问题利用数轴表示两个量的大小。

  教学重点和难点:

  重点:负数与负数比大小。

  难点:负数与负数比大小。

  教学媒体:

  教学平台

  课前学生准备:

  课堂练习本

  教学过程:

  课前准备:提问:

  1)数轴应具备哪三要素?

  2)在原点右边表示的是什么数?(正数)

  3)在原点左边表示的是什么数?(负数)

  一、复习引入:

  1、出示:各地的最低温度:

  上海:+10℃

  北京:0℃

  哈尔滨:-10℃

  广州:+12℃

  沈阳:-4℃

  (1)你能读一读吗?

  (2)把这些温度从低到高排一排。

  -10℃<-4℃<0℃<+10℃<+12℃

  2、揭示课题:把单位名称去掉就变成了一些数在比较大小,这就是我们今天要学的知识:书的比较大小。

  二、自主探究,寻找规律:

  1、将以上这些数在数轴上用相对应的点表示出来。

  2、仔细观察这些数在数轴上的位置,想一想,数与数之间有什么规律?(小组讨论)

  3、反馈:数轴上,越往右边的数越大,越往左边的数越小。

  右边的数总比左边的数大。

  正数大于0,负数小于0,正数大于负数。

  三、利用规律,比较大小:

  1.出示:+3○-2

  比一比,说说理由。

  试一试:

  1○-2 3○-4 -1.5○1.5 ○-2

  小结:正数都大于负数。

  2、出示:0○-8

  3、出示:-4○-1 -1.5○-2 -2○-4

  小结:负数与负数在比时,通过数轴想位置,右边的数总比左边的大。

  四、巩固练习:

  1、完成P14,试一试;(1)

  2、看谁比得又对又快!

  (1)-3○0 +7○0 0○-2 +1○0

  (2)-2○+1 4○-3 -7○7 +2○-1

  (3)-1○-2 -0.5○-1.5 -4○-6 -2○-5

  3、完成P14,试一试(2)

  4、写出4个比+2小的数。

  写出5个比-1大的数。

  5、判断题:

  (1)所有的负数都小于0。

  (2)-12比-10小。

  (3)-64>62。

  五、归纳总结:正数都大于零,一个正数离原点越远,这个数就越大。

  负数都小于零,一个负数离原点越远,这个数就越小。

  正数大于负数。

  注意:

  1.在数轴上表示的`两数,右边的数总比左边的数大。

  2.由正、负数在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数。

  3.比较大小时,用不等号顺次连接三个数要防止出现“0>-3<2”的写法。

  六、作业: 练习册P12、13

  板书设计:

  正数都大于零,一个正数离原点越远,这个数就越大。

  负数都小于零,一个负数离原点越远,这个数就越小。

  正数大于负数。

  《数轴》七年级数学教案 10

  学习目标

  1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

  2.了解数形结合的数学思想。

  3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

  4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

  重点

  掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

  难点

  数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

  教学过程

  一、自主学习(一)、自学课文P(二)、导学练习

  1.有理数包括哪些数?0是正数还是负数?

  2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的.东西还有哪些(直尺、弹簧秤等)?

  3.思考:

  ①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。

  ②什么叫数轴?数轴要具备哪三个要素?

  ③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

  ④表示+2的点在什么位置?表示-3的点在什么位置?

  ⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

  4.数轴的画法,有哪几个步骤?

  5.我们还可以更简便的得出数轴的定义:规定了 、 和 的直线叫做数轴。和 是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

  6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数, 的数总比 的数大。

  进一步观察数轴,发现所有的负数都在“0”的 ,所有的正数都在“0”的 ,这说明什么?

  正数都 0;负数都 0;正数 一切负数。

  (三)自学疑难摘要:

  组长检查等级:

  二合作探究

  1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

  2.把下面各小题的数分别表示在三条数轴上:

  (1)2,-1,0,+3.5

  (2)-5,0,+5,15,20;

  (3)-1500,-500,0,500,1000。

  想想看,第(3)小题数据比较大,那怎样表示呢?

  3.把下列各组数用“<”号连接起来.

  (1)–10,2,–14;

  (2)–100,0,0.01;

  (3),–4.75,3.75。

  三、展示提升

  1、每个同学自主完成二中的练习后先在小组内交流讨论。

  2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

  3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

  四、反馈与检测

  1.判断下图中所画的数轴是否正确?

  (1)

  2.下面数轴上的点A、B、C、D、E分别表示什么数?

  (2)

  3.将-3、1.5、、-6、2.25、、-5、1各数用数轴上的点表示出来。

  4.画一条数轴,并在上面标出下列的点。

  ±100±200±300

  《数轴》七年级数学教案 11

  一、教学目标

  (一)知识与技能

  通过与温度计的类比认识数轴,会用数轴上的点表示有理数,会用数简明地表示同一条直线上不同物体间的相对位置关系.

  (二)过程与方法

  经历数轴形成的过程,感受类比、数形结合思想在数学学习中的作用.

  (三)情感态度与价值观

  在直观表示有理数的活动中获取成功的体验,激发学生学习数学的热情,建立自信心.

  二、教学重难点

  (一)重点

  会用数轴上的点表示有理数.

  (二)难点

  数轴的引入.

  三、教学过程设计

  教学环节和教学程序如下:

  (一)创设情境 问题导入

  1、创设情境

  播放一公共汽车到站后,4只小动物下车,沿公路分别向两边不同的方向走一段路程后停下来的情景(播放动画一).

  源于初一学生对小动物的喜爱,提高学生参与数学活动的积极性.

  2.实物抽象

  多媒体出示问题:

  如图,画一条直线表示公路,在直线上任取一点O表示汽车站的位置,规定一个单位长度(线段OA的长)代表1m长.

  (图略)

  (1)试一试:你能帮助这些小动物找到自己的位置吗?

  (2)想一想:小鸡与小猫如何区别自己的位置呢?

  (3)做一做:怎样用数简明地表示这些小动物与汽车站的相对位置关系(方向,距离)?(注重说出表示方法及其意义)

  (4)观察图形,试着用一句话反映图形所示的内容.同桌交流得出结论.(把正数、0和负数用一条直线上的点表示出来)

  (5)联想:生活中有类似的例子吗?

  结合情境,把学生置于问题之中,让学生在探究、发现中获得知识和经验.

  (二)感悟联想 探究分析

  1、实物观察 课件演示天气预报,出现表示北京等3个城市某天气温的温度计.观察、比较两个图中的温度计,你发现了什么共同点和不同点?

  从学生已有的生活经验出发,利用教科书第11页图1.2-2创设情境,有针对性地引导学生观察温度计,为后面引出数轴作铺垫.

  2、实物演示

  以动画的形式,通过旋转、抽象、类比、概括等环节展示数轴的形成.(播放动画二)

  让学生首先从直观上有一定的感受,为后面的建模过程积累必要的经验.

  3、抽象建模

  (1)借助实验演示得到的结果,先确定原点的名称,再规定从原点向右(或向上)为正方向,从原点向左(或向下)为负方向,然后确定单位长度的名称,从而建立“数轴”这一数学模型.出示课题,板书数轴描述性定义(即三要素:原点、单位长度、正方向)并说明数轴像一只平放的温度计.

  (2)让学生根据描述性定义,各画一条数轴,然后学生互评,教师总结:

  取原点,规定正方向,选取单位长度.

  让学生通过已有的生活经验和数学知识,由实验类比突破本节课的难点,即数轴的引入.体现学生学习的过程是在教师引导下的自我建构、自我生存的过程.

  (三)合作交流 构建新知

  1.例1:如图,指出数轴上四点各表示什么数.(此问让学生独立完成)

  2.例2:请在上图中找出表示-2,-3,-的点.(教师以其中一个为例,引导学生分析其在数轴上的位置,让学生模仿老师的思路,找出另外2个有理数的位置)

  3.同桌两人为一组,一人先仿照例1出题,另一人仿照例2出题,再交换完成解答,最后互评.

  4.观察图5和自画图中表示各数的点与原点的相对位置关系,你发现了什么?(先自己思考,再小组交流,得出规律,最后完成填空)

  一般地,设a是一个正数,则数轴上表示数a的点在原点的________边,与原点的距离是________个单位长度,表示数-a的点在原点的________边,与原点的距离是________个单位长度.

  5.回到情境1中,深层理解数学与实际生活的联系.

  6.组织学生独立完成课本第12页的练习题,从过程到方法进行交流,并实施自我评价与学生互评.

  在认识、理解数轴的基础上,把数轴运用到新的环境中.关注结果的形成过程,帮助学生形成积极的态度;在问题设置的顺序上,先“形”到“数”,后“数”到“形”,体现从易到难,让不同的学生在数学上得到不同的发展.

  (四)小结与作业

  1.小结

  与同桌交流,本节课里你有什么收获?你还有哪些不清楚的地方?

  全班内进行交流,会画数轴,会用数轴上的点表示有理数.

  让学生小结,养成学习 —总结—再学习的良好习惯;让学生提问,及时反馈学生的学情,帮助学生更好的学习.

  2.作业

  (1)必做题:教科书第18页习题1.2第2题.

  (2)选做题:请找出几例生活中的数轴.

  分层要求,满足不同的.学生在数学上有不同的发展.

  四、教案设计说明

  本节课的教学是依据新的课程标准和新的教育理念进行设计的,立足于学生的认知结构来确定教学的起点和目标.

  (一)问题情境

  从具体到抽象,吸引学生参与.

  (二)建立模型

  通过实验演示、直观感受以及类比等方法,引导学生在原有的知识基础上,自我构建、自我生成新的知识.

  (三)应用与拓展

  让学生在理解数轴的基础上,把数轴运用到新的环境中.

  (四)小结与作业

  面向全体学生,分层要求,让不同的学生在数学上有不同的发展.

  (五)评价

  注重对学生数学学习过程的评价,发挥评价具有的促进学生发展的功能.

  《数轴》七年级数学教案 12

  教学目标:

  1.推导数轴上两点的距离公式,中点公式;

  2.能利用距离公式、中点公式解决问题;

  3.在解决问题的过程中,渗透数形结合、转化思想.

  教学难点:

  通过建构、转化,综合已有知识解决问题.

  教学重点:

  巧妙建构转化解决问题.

  教学过程:

  一、情境引入

  根据给出的数轴及已知条件,解答下面的问题:

  (1)已知点A,B,C表示的数分别为1,﹣2,﹣3,观察数轴,与点A的距离为3的点表示的数是_________;A,B两点之间的距离为 ;B,C两点之间的距离为_______;

  (2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是_____________;

  若此数轴上M,N两点之间的距离为2021(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M:___________,N:_____________;

  (3)若将数轴折叠,使得点B与点D重合,点A为BD中点,则点D表示的数是 ;

  二、问题探究

  如图,已知某数轴上有A、B两点,

  ①若点A对应的数为1,点B对应的数为3,则A、B两点之间的距离为 ;

  ②若点A对应的数为﹣1,点B对应的数为﹣3,则A、B两点之间的距离为 ;

  ③若点A对应的数为-1,点B对应的数为3,则A、B两点之间的距离为 ;

  ④若点A对应的数为0,点B对应的数为3,则A、B两点之间的距离为 ;

  ⑤若点A对应的数为﹣3,点B对应的数为0,则A、B两点之间的距离为 ;

  ⑥若点A对应的数为1,点B对应的数为1,则A、B两点之间的距离为 ;

  问题(2)若点A对应的数为a,点B对应的数为b,则A、B两点之间的距离为 ;(用含a,b的代数式表示)

  问题(3)若M是AB的中点,点A对应的数为a,点B对应的数为b,点M对应数m,请探究a,b,m三者的关系。

  小结:数轴上有A、B两点,M是AB的中点,点A对应的数为a,点B对应的数为b,点M对应数m,则:

  数轴上两点之间的距离,即为这两点所对应的数的差的绝对值,即AB=,也可以用右边的数减去左边的数。

  三、典型例题

  例:如图,已知A,B,C是数轴上的三点,其中点C表示的数是6,BC=4,AB=12,

  (1)点A点表示的数为 ;点B表示的数为 ;

  (2)若折叠数轴,使得A、C两点重合,则与B点重合的点所表示的.数为 ;

  (3)现有动点P、Q分别从A、C两点同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒,则当t为和值时,原点O、P、Q三点中,有一点恰好时另外两点所连线段的中点?

  同质训练:

  已知数轴上A、B两点分别对应的数为a和b,且a,b满足,点P为数轴上一点,对应的数为x.

  (1)线段AB的长 ;

  (2)折叠数轴,使得P为AB中点,则P所表示的数x是 ;

  (3)数轴上是否存在点P,使得点P到点A、B距离和为10?若存在,求出x的值,若不存在,请说明理由。

  (4)若点A,点B和点P(点P在原点)同时向左运动,速度分别为1,2,1个单位长度/分,则第几分钟时,点P为AB的中点?

  四、当堂检测

  1、数轴上,点B表示的数是﹣2,且AB=5,则点A表示的数是 ;

  2、若折叠数轴,使得表示﹣1的点与表示3的点重合,则表示2021的点与表示 的点重合。

  3、①已知,点A在数轴上表示的数为﹣2,点B表示的数为x,则AB两点的距离可以表示为 ;

  ②将数轴沿着点A折叠,若数轴上点M在点N左侧,M、N两点之间的距离为12,M、C两点之间的距离为4,且M、N两点沿着A点折叠后重合,则点M表示的数是 ;点N表示的数是 ;点C表示的数是 。

  ③若点A表示的数为﹣1,点B表示的数是2,若点A、点B分别以每秒1个单位长度、每秒2个单位长度的速度在数轴上移动,且点A始终在点B的左侧,求经过几秒时,A、B两点的距离为6个单位长度。

  五、课堂小结

  通过本节课的学习,你有什么收获?

  六、课后作业

  1、已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;

  (1)直接写出点N所对应的数;

  (2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?

  (3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?

  2、如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第_____次移动到的点到原点的距离为2021.

  3、先阅读下列材料,然后完成下列填空:

  点A、B在数轴上分别表示实数 a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设A点在原点,如图1|AB|=|OB|=|b|=|b﹣0|=|a﹣b|;

  当A、B两点都不在原点时,

  ①如图2,A、B两点都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|

  ②如图3,A、B两点都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|

  ③如图4,A、B两点分别在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|

  综上所述,

  (1)上述材料用到的数学思想方法是 (至少写出2个)

  (2)数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:数轴上表示2和5的两点之间的距离是 _________ ;数轴上表示﹣2和﹣5的两点之间的距离是 _________ ;数轴上表示1和﹣4的两点之间的距离是 _________ 。

  《数轴》七年级数学教案 13

  一、教学目标

  通过与温度计的类比认识数轴,会用数轴上的点表示有理数、

  二、教法设计

  比较法、讨论法、观察法、投影演示法、

  三、教学重点和难点

  会用数轴上的点表示有理数,把有理数用数轴上的点表示、

  四、课时安排

  1课时

  五、师生互动活动设计

  创设情景,观察猜想,举例论证

  六、教学思路

  (一)、创设情景、引导学生通过观察温度计、体会用直线上的点来示有理数的方法,导入课题

  1、展示不同读数的温度计,先让学生读出各个温度计的数后,提问:你能指用直线上的点来表示有理数吗?

  同学讨论、交流,最后教师边板书边讲述:画一条水平直线,在直线上取一点O(叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,得到数轴、(导入新课)

  2、数轴与温度计作类比,让学生亲自操作实践、(真像一个平放的温度计)+3用数轴上位于原点右边3个单位的点表示,-4用数轴上位于原点左边4个单位的点表示,原点右边个单位的点表示(),原点左边1.5个单位的点表示(-1.5)。

  (二)、投影出示例1、例2,让学生独立完成,教师总结

  例1、指出数轴上已知点所表示的数是由“形”到“数”的思维过程、例1让学生口答、

  例2、把给定的数用数轴上的点表示,是由“数”到“形”的.思维过程、例2让学生动手填在数轴上、

  (三)、想一想,促进学生之间合作在流

  1、投影片上打出问题,小组讨论,发展学生的思维空间、由小组代表发言,不同意见由其他小组代表阐述,给予同学肯定、鼓励。

  2、师生共同总结数轴的概念,以及各类数在数轴的位置关系、。

  七、小结

  同学们你们学会了什么呢?

  1、认识了数轴、

  2、用数标出数轴上的点,并会用数轴上的点表示数、

  八、作业布置

  课本习题2.2中l-4题

  《数轴》七年级数学教案 14

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的`直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-2000。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

  《数轴》七年级数学教案 15

  教学目标:

  1、知识与技能:

  (1)借助数轴理解相反数的概念,会求一个数的相反数。

  (2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

  2、过程与方法:

  在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

  重点、难点

  1、重点:理解相反数的意义,会求一个数的相反数。

  2、难点:对相反数意义的理解。

  教学过程:

  一、创设情景,导入新课

  1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

  二、合作交流,解读探究

  1、(出示小黑板)

  教师提出问题:上图中数轴上的'点B和点D表示的数各是什么?有什么关系?

  学生活动:分小组讨论,与同伴交流。

  教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

  2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

  0的相反数是0。

  3、学生活动:

  在数轴上,表示互为相反数的两个点有什么关系?

  学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

  4、练习填空:

  3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

  学生活动:在练习本上解答,并与同伴交流,师生共同订正。

  归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

  三、应用迁移,巩固提高

  1、课本P10第1题。

  2、填空:

  (1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

  3、如果一个数的相反数是它本身,则这个数是。

  4、若α、β互为相反数,则α+β= 。

  5、-(-4)是的相反数,-(-2)的相反数是。

  6、化简下列各数的符号

  -(-9)=; +(-3.5)= ;

  -=;-{-[+(-7)]}= 。

  7、若-x=10,则x的相反数在原点的侧。

  8、若x的相反数是-3,则;若x的相反数是-5.7,则。

  四、总结反思

  本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

  五、课后作业

  课本P13习题1.2A组第3、4题。

  《数轴》七年级数学教案 16

  【教学重点与难点】

  教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

  教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思 方法是本节课的教学难点。

  【教学目标】

  1、 理解数轴的概念,会画数轴;

  2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

  3、 通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

  【教材处理】

  本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

  【教学方法】

  通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的'数形结合的思想。

  【教学过程】

  一、问题解决 引入实例

  (设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

  问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

  学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

  二、提出问题感受特征

  问题2: 怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

  规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的点表示出来。

  问题3:你还能举出生活中用直线上的点表示数的例子吗?

  学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……。

  可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

  (教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体

  方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

  三、适时命名 学生定义

  1.引入数轴概念

  (设计说明:由直观认识到理性认识,引导学生建立数轴概念)

  通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

  一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

  2、揭示数轴内涵

  (设计说明:让学生在动手操作中探索数轴的三要素)

  四、提炼总结 规范定义

  问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

  可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

  (1) 数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

  (2) 数轴三要素

  ① 原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

  ② 正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

  ③ 单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

  五、定义辨析 练习巩固

  (设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,

  形成初步技能。)

  1、下列图形哪些是数轴,哪些不是,为什么?

  2、(1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;

  (2)画一条数轴,并表示出如下各点:1000,5000,-2000;

  (3)在数轴上标出到原点的举例小于3的整数;

  (4)在数轴上标出-5和+5之间的所有整数。

  (教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

  六、反思总结 情意发展

  (设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。) 问题1:什么是数轴?

  问题2:如何画数轴?

  问题3:如何在数轴上表示有理数?

  (教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

  七、布置作业

  1、 课本18页习题1.2第2题

  2、指出下面数轴上A、B、C、D各点所表示的数

  3、数轴上的点p与表示有理数3的点A的距离是2

  (1)试确定点p表示的有理数;

  (2)将点A向右移2个单位到点B,点B表示的有理数是多少?

  (3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

  (教学说明:及时作业是巩固课堂学习知识的重要环节,由于课本提供练习较少,因此作适当的补充。同时也为下节课的学习作铺垫。)

  设计说明:

  数轴是数形转化、数形结合的重要媒介,也是学生难以理解的一个难点,对学生来说,将数和形结合在一起是非常抽象的,因此,教学过程从贴近学生的实际出发,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现了从感性认识到理性认识到抽象概括地认识规律。

  教学过程突出了情景—抽象---概括的主线,体现了从特殊到一般研究问题的方法,注意从学生已有的知识经验出发,充分发挥学生的主体意识,让学生主动参与到学习活动之中,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的精神。

【《数轴》七年级数学教案】相关文章:

数学教案-数轴05-02

数学教案数轴03-26

《数轴》七年级数学教案11-23

《数轴》七年级数学教案(精选12篇)09-06

数轴05-02

七年级数学《数轴》教案03-19

七年级数学《数轴》教案5篇03-19

小学数学《数轴》测试题05-05

初中人教版数学数轴教案04-29