八年级数学教案:分式的乘除法

时间:2024-09-10 22:59:57 蔼媚 数学教案 我要投稿
  • 相关推荐

八年级数学教案:分式的乘除法

  作为一名专为他人授业解惑的人民教师,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!下面是小编收集整理的八年级数学教案:分式的乘除法,希望对大家有所帮助。

八年级数学教案:分式的乘除法

  八年级数学教案:分式的乘除法 1

  一、目标要求

  1.理解掌握分式乘除法运算法则。

  2.能熟练地运用分式乘除法运算法则进行分式的乘除运算。

  二、重点难点

  重点是分式乘除法法则。

  难点是分子或分母为多项式的分式的乘除法。

  1.分式的乘除法法则:

  (1)分式乘以分式,用分子的积做积的分子,分母的积做积的分母,用式子表示为=;

  (2)分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘,用式子表示为÷ = = 。

  2.遇到分式的乘方、乘、除法的混合运算,首先要注意运算顺序,即先乘方、后乘除,而除法运算又应根据其法则转化为乘法运算;其次要注意运算符号法则与分式的符号法则,最后在约分时要注意分子与分母是为积的形式,若不是则应进行因式分解。

  3.分式的运算中不能去分母,因为去分母是等式的性质,而分式不是等式,分式的`运算只是对分式进行恒等变形。

  三、解题方法指导

  【例1】计算:

  (1)3x2y (-);

  (2)6x3y2÷(-) ÷x2;

  (3)( )÷(-)(-)

  分析:分式的分子与分母是单项式的乘除,先将除法转化为乘法,根据分式的乘法法则,先确定结果的符号,然后将系数相乘除,其余的因式按指数法则运算。

  解:

  (1)原式=-3x2y =-1。

  (2)原式=6x3y2(-)

  =-6x3y2 =-。

  (3)原式=(-)(-)(-)

  =-=-。

  【例2】计算:

  (1)÷ 。

  (2)÷(x+3)

  分析:分式的乘除混合运算,首先将除法转化为乘法,将分子、分母因式分解后进行约分。

  解:

  (1)原式=

  (2)原式= ÷(x+3)

  注意:

  (1)分式的分子、分母是多项式时,一般先按某一字母的降幂排列,再分解因式,并在运算过程中约分,使运算简化。

  (2)分式除法中,除式是整式时,可以看作分母是1的式子。要注意乘除法是属于同一级运算,必须严格按从左到右的顺序。

  四、激活思维训练

  ▲知识点:分式的乘除法运算

  【例】已知m=,求代数式÷的值。

  分析:首先应将代数式化简,然后把已知条件变形后代入,即可求出其值。

  解:÷ =

  =(m+2)(m-2)=m2-4。

  ∵ m=,∴ m2=1。

  ∴原式=m2-4=1-4=-3。

  五、基础知识检测

  六、创新能力运用

  参考答案

  【基础知识检测】

  1.(1)分子的积做分子、分母的积做分母、分子、分母,相乘

  2.(1)D(2)D

  八年级数学教案:分式的乘除法 2

  一、教学目标

  知识目标

  1.了解并掌握分式乘除法运算法则。

  2.会运用分式乘除法法则进行分式乘除法运算。

  能力目标

  1.会通过类比的方法来理解和掌握分式的乘除法法则。

  2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。

  情感目标

  1.继续熟悉“数、式通性”的数学思想方法。

  2.会通过类比的方法来理解和掌握分式的乘除法法则。

  二、重点难点和关键

  重点

  会用分式乘除法法则进行分式乘除法的运算。

  难点

  会将多项式因式分解。

  关键

  将除法转化为乘法进行计算。

  三、教学方法和辅助手段

  教学方法

  讲练结合、以练为主

  辅助手段

  幻灯投影演示

  四、教学过程

  复习

  1.计算:

  2.分数的乘除法法则是什么?

  新课讲解

  1.分式的乘除法法则

  提问:由分数的`乘除法法则猜想分式的乘除法法则是什么?(讨论、交流、集中评讲)

  分式乘除法法则:(略)

  式子表示:

  2.例题讲解

  例2计算:(解略)

  注意:

  1.计算过程要对照分式乘除法法则,将乘除法全部化为乘法进行。

  2.第三题中的(-8xyz)应看成分母是“1”的式子。

  3.计算结果要化为最简分式或整式。

  4.运算过程中要注意符号的变化。

  练习:P67 T1(板演)

  例3计算:(解略)

  注意:分式乘除法运算时,分子分母中的多项式要先因式分解,再约分。

  练习:P67 T2(1)—(4)(板演)

  例4计算:

  解:=

  注意:

  1.分子分母中的多项式一般要先按某一字母降幂或升幂排列。

  2.同级运算中,如没有附加条件(如括号),则应按从左到右的顺序进行计算。

  练习:P67 T(5)(板演)

  小结

  这节课学习了运用“分式乘除法法则”进行分式乘除法的方法,主要借助分式约分、因式分解等知识来进行,计算的结果应是最简分式或整式。

  作业

  P73 A组T4 T5 T6

  五、板书设计:略

  六、教学后记

  八年级数学教案:分式的乘除法 3

  一、教学目标

  1.类比分数的乘除运算探索分式的乘除运算法则。

  2.会进行简单分式的乘除运算。

  3.能解决一些与分式乘除运算有关的简单的实际问题。

  4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。数学生活化,学好数学,为幸福人生奠基。

  二、教材分析

  本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。

  三、学情分析

  八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。采用自主学习与合作学习相结合的学习方式,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想,逐步形成科学的数学价值观。

  四、重点难点

  教学重点:分式的乘除运算法则的理解与运用

  教学难点:分子、分母是多项式的分式的乘除法的运算

  五、教学过程

  (一)、创设情境,引入新课

  活动1:课前三分钟

  学生主持:请同学们根据我的描述猜一个人物?…

  生:鲁班

  学生主持:根据小草的构造鲁班发明了锯子,鲁班运用了什么思想方法?

  生:类比

  这个小故事让我们认识到类比的重要性,前面我们类比分数研究了分式的基本性质。今天,我们就来类比分数的乘除研究5.2分式的乘除法。

  【设计意图】:让学生观察图片,不但可以体会到数学来源于生活,唤起学生对数学的'热爱,激发学生学习的兴趣,为类比分数乘除探索分式乘除法则打下基础。

  (二)、合作学习,共探新知

  活动2:预习反馈,探索法则

  问题:口答:

  猜一猜

  师生共同归纳分式的乘除法法则,这里运用了什么数学思想?类比、转化数学思想

  【设计意图】让学生类通过类比→观察猜想→-归纳明晰→-得出结论。通过类比分数的乘除法则总结分式的乘除法法则。

  例题讲解,师生共同完成。

  注意:1.分式乘除法的实质是约分化简。

  2.结果是最简分式或整式。

  单项式 → 约分

  分子、分母 分类

  多项式 → 分解因式,约分

  开心练习:

  学生板演,小组代表在小白板上答题,其余同学在学案上完成。

  【设计意图】:运用“兵教兵”教学方式,让学生通过充分交流,自学已会的学生教还不会的学生教师尽可能少讲,确保学生的学习时间,提高课堂效率。

  活动3:活学活用

  炎热的夏天到了,如果能吃到甘甜的西瓜是多么惬意啊。你会买西瓜吗?让我们跟随咱班的两名同学看看她们是如何买西瓜的?

  播放学生买西瓜视频。

  问题:假如我们把西瓜都看成是球形,半径为R,并把西瓜瓤的密度看成是均匀的,西瓜皮厚都是xcm,,怎样买西瓜合算?

  先猜一猜,再算一算。

  链接几何画板:观察体积比的变化。

  变式:若西瓜的体积不变,是买皮厚的还是皮薄的西瓜?(几何画板演示)

  【设计意图】:将问题生活化,让同学们帮助解决问题,激发学生的求知欲,渗透数感和几何直观,巧妙的利用几何画板将问题动起来,生动直观。变式训练,让学生学会举一反三。

  (三)、跟踪训练,分层达标

  1.利用慧学云交互平台,进行选择题的跟踪训练。

  学生在规定的时间内答题,师现场根据答题结果统计,进行有针对性的讲解。学生充当小老师,教师予以补充。

  2.智力冲浪

  (1)下面的计算对吗?如果不对,应该怎样改正?

  (2)计算

  (4)计算

  【设计意图】:设置梯度训练题,学生砸蛋抢答问题,巩固本节课的知识点,检验学生的掌握程度。

  (四)、归纳小结,形成体系

  我们这节课都学习了哪些知识? 你有哪些收获呀?那我们用到哪些数学思想?由学生归纳本节课的内容,并相互补充。

  【设计意图】:构建知识思维导图,在知识树上进行梳理知识,生动直观。

  类比的学习方法是学习新知识的好方法,让我们细心观察,一起研究有趣的数学吧!

  (六)、布置作业,拓展延伸

  必做题:P116页1题 2题

  思维拓展:

  八年级数学教案:分式的乘除法 4

  学习目标

  1、能说出约分的意义和步骤。

  2、能说出最简分式的意义。

  3、能说出分式的乘、除和乘方法则,并能用式子表示。

  4、能熟练地进行分式的乘除和乘方运算。

  5、会归纳总结整数指数幂的运算性质。

  6、能熟练地运用幂的运算性质进行计算。

  主体知识归纳

  1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2、约分的步骤把分式的`分子与分母分解因式,然后约去分子与分母的公因式。

  3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

  4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

  5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

  7、整数指数幂的运算性质可归纳如下

  (1)am·an=am+n(m、n都是整数);

  (2)(am)n=amn(m、n都是整数);

  (3)(ab)n=anbn(n是整数)、

  基础知识精讲

  1、正确理解分式约分的意义

  (1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。

  (2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

  2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

  (1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

  (2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

  3、进行分式的乘除运算时,应注意以下几点:

  (1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

  (2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

  (3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

  (4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

【八年级数学教案:分式的乘除法】相关文章:

分式的乘除法05-02

数学教案-乘、除法竖式05-02

数学教案-除法的意义和乘、除法各部分间的关系05-02

数学教案-分数乘、除法应用题的对比05-02

数学教案-分数乘、除法应用题对比05-02

乘、除法竖式05-02

《分式的乘除法》教案(通用10篇)11-29

数学教案-课题一:除法的意义和乘、除法各部分间的关系05-02

「数学教案」分式的加减04-25