(精华)六年级数学上册第一单元教案11篇
作为一位无私奉献的人民教师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案要怎么写呢?下面是小编为大家整理的六年级数学上册第一单元教案,仅供参考,欢迎大家阅读。
六年级数学上册第一单元教案 1
【教学内容】
小学数学六年级上册第2页。
【教学目标】
1.让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
2.让学生通过观察、操作、比较等活动,经历数学建模的过程,积累数学活动经验。
3.通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
重点:让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
难点:通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学准备】
课件、作业纸
【教学过程】
一、建立“算法”模型
(一)直观体验
1.出示:小新、爸爸一起吃一块蛋糕,每人吃块,2人一共吃多少块?
(1)列出算式,并说说这样列式的道理。
(2)汇报并板书:或。
引导得出:求几个几分之几相加,可以直接列乘法算式。
(3)这道乘法算式与我们以前学过的有什么不一样?(板书课题:分数乘整数)
(4)如果用直条图表示1块蛋糕,你能在图中表示吗?
(5)根据图,的结果是多少?(板书:)
2.如果有4个人一共吃多少个?
(1)列出算式。(板书:)
(2)在直条图中表示,并写出结果。
(3)板书:
3.如果有7个人一共吃多少个?
(1)列式,并在直条图中涂一涂找到结果。
(2)板书:
(二)比较发现。
1.比较:你发现了什么?
2.思考:为什么分母不变,分子乘整数?
(1)结合图,从分数的意义上解释:里有1个2份,表示有2个2份,所以一共涂出4,其他两道算式同理。
(2)转化为加法算式,利用同分母分数计算法则解释。
其他两道算式同理。
3.验证。
出示
(1)直接算出结果。
(2)在方格图中涂一涂,表示。
(3)验证计算结果是否与实际涂色结果一致。
(三)推而广之。
1.每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
2.每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
(四)回顾反思。
1.说一说,分数乘整数可以怎样算?(板书:用分子乘整数的积作分子,分母不变。)
2.我们怎么找到分数乘整数的计算方法的?
二、应用“算法”模型
(一)在应用中优化。
1.介绍另一种算法--先约后乘:
2.感受优越性。
出示:
(1)展示做法:
(2)比较两种做法:你觉得哪种方法好?好在哪里?
3.专项练习。
先判断能否先约分,再计算出结果。
三、在解决问题中应用。
1.一袋面包重千克,3袋重多少千克?
2.李老师用铁丝围了一个正方形,围成的正方形的边长是,那李老师围这正方形用去多少铁丝(接头处忽略不计)?
(三)在应用中分化。
《分数乘整数》教学设计说明
《分数乘整数》是小学数学计算教学中重要的一环。它是在学生学习了整数乘法,理解了分数的意义和性质,掌握了分数加、减法的基础上进行教学的,同时又是学生学习分数乘分数和分数乘百分数的重要基石。
本节课设计的理念主要有以下两个方面:
一是注重依靠算理掌握算法。
计算课的教学不仅需要掌握算法也需要讲清算理,算理是算法的理论依据,算法是算理的提炼和概括。二者是相辅相成的。在教学中采用数形结合、转化等教学策略促成算理与算法的有效融合。
二是注重“算法”的模型的.建立。
分数乘整数的计算法则就是一个数学模型,教学时应该让学生在理解算理时适时、适度、抽象地提炼算法,有效建模。
本节课设计的说明主要有以下三个方面;
1.在直观体验环节中,通过具体的涂色操作,一方面加深学生理解分数乘整数的意义,另一方面通过数形结合,帮助学生直观地理解算理。
2.算法模型的建立不是靠一个例子来完成的,而是在不同算式的背后找到共性,并通过验证活动,让学生先初步建构分数乘整数的计算方法,然后逐步将数抽象为字母,让学生用简练、准确的符号将分数乘整数的计算方法表达出来,形成模型,最后通过回顾反思,帮助学生将获得算法模型的过程进行有效梳理。直观操作、比较分析、猜测验证、概括抽象等活动是形成模型的必要环节,经过学生的整理与总结,模型的建立更加扎实,同时积累了相关建模活动经验。
3.在应用环节的教学中分三个层次。第一个层次,通过比较让学生直观感受到“先约后乘”
方法的优越性。方法的优化不是刻意的,而是学生在应用对比中乐于接受的。第二个层次,将计算教学与应用教学紧密结合起来,利用模型求解可以帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,使学生数学素养得以提升。第三个层次的练习,便于让学生进行模型与模型之间的区分,明白模型与模型的建立和使用是在特定范围内的。
六年级数学上册第一单元教案 2
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的`意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式:×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”
(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: ×。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: ()
(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个是多少?算式:×2
(2)求枝或枝长多少分米,就是求的是多少,或的是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
六年级数学上册第一单元教案 3
教学过程
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、 小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的.数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、 总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
个人修改
以前我们学过哪些表示方向的方法?
怎样用数对表示同学的座位?
游戏:说数对猜同学。
六年级数学上册第一单元教案 4
第1单元分数乘法
第10课时整理和复习
【教学内容】教材第17页。
【教学目标】
1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。
2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
3、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。
【重点难点】
重点:引导学生找准单位“1”,分析应用题的数量关系。
难点:让学生正确、独立地分析应用题的数量关系。
【导学过程】
一、复习分数乘法
1、学生独立计算P17第1题,并思考式子的意义及计算法则。
2、分数乘法的意义
(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)
(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)
3、分数乘法的计算法则
(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母不变。
(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。
4、练习:练习四第1题。
二、复习计算及简便计算
1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的`要先算小括号里面的,再算中括号里面的。
2、复习乘法的运算定律:
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
观察P17第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。
练习:练习四第4题。
三、复习分数乘法应用题
1、复习解答分数乘法应用题的步骤:
(1)找到题目中的分率句,确定单位“1”。
(2)根据题目中的数量关系,求出所要求的部分量。
2、P17第3题
(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?
(2)根据题意分析数量关系,然后列式计算,全班讲评。
【知识梳理】
本节课你学习了哪些知识?
【随堂练习】
练习四第5题。
六年级数学上册第一单元教案 5
第一课时
教学内容:课本第2页~3页的例题和“做一做”,练习一的第1~7题。
教学目标:使学生理解位置,并会用数对表示位置。
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学方法:讲授法、演示法,讨论法、练习法。
教具准备:教师准备多媒体。
教学过程:
一、导入
1、我们全班有54名同学,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
四、总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
六、教后记:
通过呈现确定多媒体教室中学生的座位这个情景,利用学生已有的生活经验引出本单元内容的学习,极大地调动了学生的学习积极性。教学中积极引导与点拨,加深了学生对数对的理解。
第二课时
教学内容:课本3页例2,练习一第3、4、6、7题。
教学目标:
1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。
2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
教学重点:在方格纸用数对确定位置。
教学难点:利用方格纸正确表示列与行。
教学用具:动物园示意图的`方格纸图。
教学过程
一、复习导入,提出学习目标。
1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?
2、 揭题,提出学习目标。
让学生先说说,再出示学习目标:
(1)方格纸上什么线表示列,什么线表示行。
(2)利用方格纸确定物体位置的方法。
二、展示学习成果
1、认识方格纸的列与行。
竖线是列,横线是行。
2、 自主学习,小组内展示。
(1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)
(2)指名学生板演。
3、全班展示。
(1)问题1:熊猫馆在第3列第5行,用(3,5)表示;海洋馆在6列第4行,用(6,4)表示;猴山在第2列第2行,用(2,2)表示;大象馆在第1列第4行,用(1,4)表示。
(2)问题2:让板演的学生说说是怎样标出各个场馆的位置。如:飞禽馆(1,1)在第1列第1行交*点上……
三、拓展知识外延。
1、完成练习一第3、4题。
2、完成练习一第6题。
(1) 独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?数对的哪个数字发生了改变?点A再向上平移5个单位,位置在哪里?数对的哪个数字也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。(小组内互相交流、探讨。)
(4) 观察平移前后的图形,说说你发现了什么?
(5)汇报:图形不变,右移时,列变了,数对的第一个数字改变了,上移时,行变了,数对的第二个数字改变了。
(6)学生质疑问难,激发知识冲突。
a、针对同学的汇报,学生自由质疑问难。
b、教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?
四、归纳总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业:练习一第5、7题。
六、教后记:
让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
六年级数学上册第一单元教案 6
第一单元 位 置
第二单元 分数乘分数
第一课时 分数乘以整数
第三课时 运算定律的应用
5×6+7×3 15×(34-29)
第七课时:倒数的认识
第二课时 解决问题
第四课时:已知一个数的几分之几是多少,
求这个数的应用题
教学内容:“已知一个数的几分之几是多少,求这个数的问题”,课文第37的例1,38页完成“做一做”的题目和练习十的第1~3题。
教学目的:使学生掌握方程解答分数除法应用题的方法,加深对分数除法意义的理解,提高学生解答含有分数的简易方程的技能,为今后解答分数除法应用题打好基础。
重点难点:用列方程的方法解决问题。
教学过程:
一、复习。
1.分数除法法则是什么?(指名学生回答)
2.一个数的5倍是32,这个数是多少?
(要求学生列出简易方程,说出根据什么这样列)
二、新授。
1.出示题目:电脑呈现课文例题拼图
师:从题中你能得到哪些信息?(学生回答,出示)
生:成人体内的水分约占体重的2/3;
儿童体内的水分约占体重的4/5
小明体内有28G的水分;
小明的体重是爸爸的'体重的7/15。
(2)提出问题,解决问题。
第一个问题小明的体重是多少千克?
师:用哪些信息可以解决这些问题?
学生经过寻找,筛选出有用的信息,整理成一道应用题。
儿童体内的水分约占体重的4/5。小明体内有28千克的水分,小明的体重是多少千克?
①数量关系
a.4/5表示什么?
B.画线段图
六年级数学上册第一单元教案 7
教学目标:
1、知识与技能目标
能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、过程与方法
在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。
3、情感态度与价值感
在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题
学习者特征分析:
接受教育者是小学六年级的学生。
教学策略选择与设计:
(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”
(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。
(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的.学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。
教学资源与工具设计:
(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。
(2)教师自制的多媒体课件;
教学过程:
一、复习旧知,课前铺垫
1、怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
二、提出质疑,引入新课
圆锥有什么特征?它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
三、动手操作,获得新知
1、探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3、
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1、出示例题学生读题,理解题意,自己解决问题。
例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的体积是76立方米
2、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3、出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?
4、比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
四、综合练习,发展思维
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()立方米3a立方米9立方米
(2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米6立方米3立方米2立方米
3、学生操作
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m、并板书出来,再比较怎样放体积的圆锥体。
五、课后小结,归纳知识
这节课你有什么收获?哪个同学、哪个小组学习?
六、作业布置,巩固新知
1、本节课后第3、4、5题。
2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。
六年级数学上册第一单元教案 8
一、教学内容
1、分数乘法的意义
2、分数乘法的计算
3、利用分数乘法解决相关实际问题。
二、教学目标
1、使学生理解分数乘法的意义是整数乘法意义的扩展;理解和掌握分数乘法的计算方法,会计算分数乘整数、分数、小数;能运用乘法运算定律进行一些简便计算。
2、使学生经历分数乘法计算方法的探索过程,经历应用分数乘法解决简单实际问题的过程,进一步培养分析、比较、抽象、概括、归纳、类推的能力,发展初步的合情推理和演绎推理的能力。
3、使学生感受知识之间的内在联系,提高自主探索与合作交流学习的能力,建立学好数学的信心。
三、主要变化与具体编排
(一)主要变化
1、进一步厘清分数乘法的意义。
分数乘法的意义是整数乘法意义的扩展,二者在本质上完全一致,只是在表述方式上有所区别。例如,如果脱离情境,在抽象的层面上讨论“5×3”,它既可以表示5个3相加,用“倍”的语言来描述就是“3的5倍”;也可以表示3个5相加,同样可以说成“5的3倍”。类似地,如果以这样的方式来讨论“3×”,它既可以表示3个相加,即“的3倍”;也可以表示“3的”。从表面上看,“一个数的几分之几”是一种全新的表述,但实际上,它只是省略了“3的倍”中的“倍”字,把“一个数的几倍”扩展到“一个数的几分之几”。从另一个角度看,“3的”和“个3”表示的意思完全相同,例如,一根绳子长3 m,“它的长多少米”和“根绳子长多少米”说的是一个意思。因此,不管是整数乘法还是分数乘法,其意义都可以归结为“几个几”,只不过,这里的两个“几”都既可以是整数,也可以是分数。
根据这样的思路,教材编排了三道例题来教学分数乘法的意义和计算。例1,让学生计算3个m是多少,学生可以直接利用整数乘法的意义,转化成连加进行计算。例2,是例3的铺垫,让学生根据整数乘法中的数量关系“单位量×数量=总量”列出“1桶水12L,桶是多少升”的算式是12×,然后结合直观图和分数的意义,发现12×在这儿表示的就是12L的,进而得出“一个数乘几分之几可以表示求这个数的几分之几是多少”的结论。在这一过程中,把“桶水”变成“1桶水的”,实现了从“量”到“率”的有效转换。有了例2的基础,例3中求“公顷的”,算式列成×就“有据可依”了。
这样编排,有几个好处。一是在单元之始就把分数乘法意义的两种不同表述方式都呈现出来,使学生对分数乘法的意义有比较全面、完整的认识。二是编排逻辑更加清晰,先让学生理解分数乘法的意义,解决“如何列式”,再解决“如何计算”。三是突破了过去教材中到“问题解决”部分才去解决“求一个数的几分之几是多少”的限制,大大拓宽了本单元其他内容的素材选择范围。例如,既可以出现“蜂鸟的飞行速度是千米/分,分钟飞行多少千米”的题材(分数是一种具体量,带单位),也可以出现“一头鲸长28 m,一个人身高是鲸体长的。这个人身高是多少米”的练习题(分数是一种“率”,不带单位)。
2、增加分、小数相乘的内容。
学生在未来的学习中会遇到许多分、小数相乘的情况,例如,解决“按1:5的比配制一杯1.2 L的稀释液,需要多少升浓缩液”的问题时,需要计算形如1.2×的算式。如果学生不会直接约分,计算的繁琐程度和出错概率就会大大增加。因此,教材新编了例5,让学生分别计算2.1×和2.4×,让学生根据数据的特点灵活选择计算方法,能直接约分的尽量直接约分。教学时,要使学生通过2.4×=24×0.1×=×0.1×=0.6×的推导过程理解“为什么能直接约分”的原理。
3、调整了用分数乘法解决实际问题的类型。
如前所述,学生已经在“分数乘法的意义和计算”中解决了“求一个数的几分之几是多少”的基本问题。这一基本数量关系的掌握对于解决更复杂的分数乘法问题至关重要。
此次修订增加了“连续求一个数的几分之几是多少”的问题。这一类问题是“求一个数的几分之几是多少”的延续,已知量和所求的量之间的关系没有直接给出,而是通过一个“中间量”搭建起二者之间的“桥梁”。在解决这一类问题时,需要学生把复杂的问题化归为基本的“求一个数的几分之几是多少”,并抓住这一基本数量关系中的几个关键要素:单位“1”是谁?所求的量是谁?二者之间是几分之几的关系?尤其要注意单位“1”与几分之几之间的对应关系。
对于“求比一个数多(或少)几分之几的数是多少”这类问题,与实验教材相比,修订后的教材减轻了例题的份量,在例题中只出现不同量的情况(婴儿每分钟心跳的次数比青少年多),对于同一量的情况(嗓音降低),则放在“做一做”中让学生巩固掌握。
4、把“倒数”的内容移至“分数除法”单元。
倒数是联结分数乘法和分数除法的'纽带。在进行分数除法计算时,要用到“除以一个数,等于乘上这个数的倒数”这一结论,因此,把“倒数”安排在“分数除法”单元,更能体现出学习倒数的必要性。
(二)具体编排
1、例1。
直接利用整数乘法的意义来引入分数乘法,使学生理解几个相同分数相加和几个相同整数相加都可以用乘法计算。并通过将分数乘法转化为分数加法来探究分数乘法的算理,掌握计算方法。
从吃蛋糕的实际问题引入,借助圆形直观图帮助学生理解题意,探究计算方法。这一直观图延续了三年级学习简单的分数加法时所用的直观图,有助于学生利用已学的知识自主探索。此例中的分数带单位,是一个“量”,学生对于求几个相同量之和的数量关系非常熟悉。先呈现加法计算,然后直接根据整数乘法的意义列出两个乘法算式,说明在这种情况下整数乘法的意义同样适用。
计算时,先将分数乘法转化为几个相同分数相加,使学生明白分母不变、分子相乘的道理。在此基础上总结分数乘整数的计算方法,并指出有时可以先约分再相乘的简便算法。
2、例2。
让学生利用已学的整数乘法的数量关系进行类推,列出分数乘法算式,结合具体情境,使学生理解“一个数乘几分之几可以表示求这个数的几分之几”。这是“求一个数的几分之几可以用这个数乘几分之几”的列式依据。
教材呈现了三幅图,都是已知1桶水的体积,分别要求3桶水、桶水、桶水的体积。在这里,列式所依据的数量关系都是“每桶水的体积×桶数=水的体积”,只是桶数可以由整数扩展到分数。接下来,结合情境,说明求桶水、桶水的体积就是求12L的和12L的分别是多少。在此基础上,概括出“一个数乘几分之几,可以表示这个数的几分之几是多少”。
3、例3。
本例是在学生会利用“求一个数的几分之几是多少,用乘法计算”列式之后,学习分数乘分数的计算方法。
教材利用两个小题,由简单到复杂,结合直观操作,使学生在探索和理解分数乘分数算理的基础上,一步一步总结出分数乘分数的计算方法,渗透数形结合的数学思想,培养学生的逻辑推理能力。
要理解分数乘分数的算理,其根本在于分数意义的理解。在这里,有些分数是带单位的“量”,有些分数是不带单位的“率”,事实上,“量”与“率”也是可以互相转化的。例如,公顷,实际上就是1公顷的;公顷的,就是1公顷的,即公顷。
4、例4。
本例是学习分数乘法的简便方法。学生在前面对于分数乘法的意义和算理有了深刻的理解后,教学重点转入寻求便捷的算法。
在设计情境时,教材特意把两个小题设计成需要运用分数乘法意义的两种不同形式进行列式的情形,旨在进一步巩固分数乘法的意义。其中,第(1)小题是“求一个数的几分之几”,第(2)小题既可以根据“速度×时间=路程”列式,也可以根据“几个相同分数相加”列式。
在数据处理上,本例中既包含分数与分数相乘,又包含分数与整数相乘。学生可以通过此例,进一步掌握分数乘法的一般性算法。
5、例5。
本例是教学分数与小数相乘的计算问题。分、小数混合运算是在日常生活中以及未来的数学与其他学科的学习中经常会遇到的情形,因此,根据分、小数的数据特点灵活选择计算策略,也是学生应该具备的一项技能。为此,教材在修订时增加了这部分内容。
分数和小数相乘,可把分数化成小数相乘(如果分数可以化成有限小数),也可把小数化成分数相乘。不管哪种方法,都是学生已学的知识,可以让学生自行解决。而当小数与分数的分母存在某种倍数关系时,可以直接“约分”。这种约分虽然与以前学过的约分形式不同,但实质都是除以一个相同的数。
6、例6。
从“做一个长方形画框需要多长的木条”的实际问题引入,利用长方形画框的周长计算引出分数混合运算。鼓励学生用不同的方法(除了教材上的两种方法,还有可能用四条边相加的)计算,很自然地呈现各种形式的算式,有两级运算的,有带小括号的。教材直接说明分数混合运算的顺序和整数混合运算顺序相同,让学生自主解决。
教材特意用两道有关联的算式教学分数混合运算的顺序,为接下来正式教学把整数乘法运算定律推广到分数乘法作了很好的铺垫。在此基础上,再通过观察、计算,归纳得出“整数乘法的交换律、结合律和分配律,对于分数乘法也适用”的结论。
7、例7。
教材结合具体计算,说明应用乘法运算定律可以使分数混合运算更加简便。
8、例8。
本例是让学生在会解决求一个数的几分之几是多少的基础上,解决连续求一个数的几分之几是多少的实际问题。在这里,由于研究的是三个量之间的关系,在描述其中某两个量的数量关系时,单位“1”是在动态变化的。
教材按“阅读与理解”“分析与解答”和“回顾与反思”呈现解决问题的一般步骤。到了高年级,随着问题复杂度提高,对于信息的搜集、题意的理解以及整个问题解答过程以及结果合理性的回顾与讨论,显得越来越重要。
在“分析与解答”环节,一方面,通过折纸或画图等操作活动,借助直观图形帮助学生理解题中的数量关系,体会画图是分析问题、解决问题的重要策略。另一方面,倡导解决问题方法的多样化。既可以先求出萝卜地的面积,再求出红萝卜地的面积;也可以先求出红萝卜地占大棚面积的几分之几,再求出红萝卜地的面积。不同解题思路的呈现,可以提高学生思维的灵活性和发散性。
“回顾与反思”让学生自己完成。检验的角度很多,比如,看看直观图画得是否符合题意,看看列式是否符合图意,看看计算是否正确。检验的方法也是多样化的。例如,可以看到萝卜地的面积是红萝卜地的4倍,而大棚面积是萝卜地的2倍。用红萝卜地的60m2乘4,得到萝卜地是240 m2,再乘2,是480m2,与题中的信息相符。也可以看看红萝卜地的面积是否占整块萝卜地的。
9、例9。
本例是让学生解决求比一个数多(或少)几分之几的数是多少的问题。虽然还是研究两个量间的关系,但由于没有直接给出“一个量是另一个量的几分之几”,需要先求出一个量比另一个量多(或少)的具体数量或者先求出一个量是另一个量的几分之几。
教材通过线段图直观地表示出“婴儿每分钟心跳的次数比青少年多”的意思,对于学生理解题意、选择解决方法起到了关键性的作用。
教材体现了多样化的解题策略。可以先计算婴儿每分钟心跳比青少年多多少次,这就需要先解决“75次的是多少次”的问题。还可以先求出婴儿每分钟心跳次数是青少年的几分之几,这就需要先解决“比一个数多的数是这个数的几分之几”的问题。
“回顾与反思”部分,使学生通过回顾解题的过程,充分认识到画线段图这一策略对于解决问题的重要作用。同时,列举了一种检验结果的方法,引导学生用不同的方法加以检验。
四、教学建议
1、在已有知识的基础上,帮助学生自主构建新知识。
2、通过操作和直观图示帮助学生理解分数乘法的算理,掌握计算方法。
3、紧密联系分数乘法的意义,引导学生在理解数量关系的基础上正确列式,解决实际问题。
六年级数学上册第一单元教案 9
【教学目标】
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
【教学重难点】
负数的意义。
【教学过程】
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?今天的数学课我们就从这个话题聊起。我们周围有很多的自然和社会现象中都存在着相反的情况,太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
(3)展示交流
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人,这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数;这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?
强调指出:像过去我们熟悉的这些整谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况。
哈尔滨:-15 ℃~-3 ℃
北京:-5 ℃~5 ℃
深圳:12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(3)找一找、说一说
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?为什么?
现在你能很快找出来吗?
说一说,你怎么这么快就找到了?
你能很快找到12 ℃、-3 ℃吗?
(4)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(5)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
4.练一练
读一读,填一填。
数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
5.进一步认识“0”。
(1)看一看、读一读。
6.课后小结
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史
(1)介绍
其实,负数的.产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:“两算得失相反,要令正负以名之。?古代用算筹表示数,这句话的意思是:“两种得失相反的数,分别叫做正数和负数。?并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
1.表示海拔高度。
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作x;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作x。
2.表示温度。
月球表面白天的平均温度是零上126℃,记作x℃,夜间的平均温度为零下150℃,记作x℃。
3.小红的家在五楼,储藏室在地下一楼。如果她要回家,按按钮表示时间。如果到储藏室取东西呢?
4.“净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
六年级数学上册第一单元教案 11
教学内容:
教材第4-5页的例2和“试一试”、“练一练”,练习二第1-4题。
课时教学目标:
1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
2、培养和解决简单的实际问题的能力,体会生活中处处有数学。
教学重点:掌握百分数在实际生活中的应用。
教学难点:渗透生活即数学的教学思想。
预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?
疑难点:分段纳税的有关知识。熟练地运用百分数进行纳税的计算。
教学过程:
一、认识、了解纳税(幻灯投影出示)
纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的`种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到2005年,全年税收收入已达到30866亿元。(进行纳税意识教育)
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税
二、教学新课
1、教学例2.
出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。
提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!
学生尝试练习,集体订正,教师板书算式。
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
2、我们怎样计算呢?
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
3、做“试一试”
提问:这道题先求什么?再求什么?
生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。
学生板演与齐练同时进行,集体订正。
4、学生在课本上完成练一练。
三、同步练习
1、练习二的第1题
指名学生读题,让学生说明算式里的每个数据的意思。
18万和360万分别表示什么?那么这儿应缴纳的营业税应该怎样求呢?
学生讨论并练习。
四、拓展提高
练习二的第4题。
我国2005年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。
超过部分不到500元的5%
超过部分是500元---2000元的10%
超过部分是2001元---5000元的15%
李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?
在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?
介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。
五、课堂回顾
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
六、布置作业
六年级数学上册第一单元教案 12
教学内容
教科书第11页例1、第12页例2及相关练习。
教学目标
1.掌握求一个数比另一个数增加(或减少)百分之几的问题的解决方法,能综合运用所学百分数的知识解决相关实际问题。
2.能结合具体的问题情景多角度地分析问题,在分析问题的过程中体验解决问题策略的多样化,提高同学们解决问题的能力。
3.在解决问题中感受百分数与现实生活的联系,体会百分数的应用价值。
教学重、难点
求一个数比另一个数增加(或减少)百分之几的数学问题的解题思路和方法。
教具、学具准备
多媒体课件。
教学过程
一、创设情景,激趣引新
教师:随着经济的发展,这几年农村变化很大,你们知道这方面的信息吗?
学生讲述自己知道的相关信息后,教师展示一些新农村的图片。
教师:尤其是这两年,农村变化可大了,你们看,这是小营村的张华同学给老师的信。
课件出示一封信,上面写着:我们村今年有彩电360台,去年只有300台……
教师:看到这个信息,你们能提出什么数学问题?学生自主提出、解决数学问题。
教师:张华同学也提出了一个问题,想请同学们帮他解决,我们一起来尝试帮帮他好吗?
课件出示数学问题:今年比去年增加了百分之几?
教师谈话揭示课题:解决问题。
二、合作探究,解决问题
教师:这个问题和你们刚才提出的数学问题有什么不同之处?你是怎么理解"今年比去年增加了百分之几"这个问题的?大家讨论一下吧!
教师:想一想,"今年比去年增加了百分之几"是哪两个量在比较?谁是单位"1"?
学生分组讨论后,再进行交流。
交流后,教师问:根据上面的分析,谁能说说这题的解题思路?
学生试做,汇报结果。
教师:想一想,这个问题还有其他解法吗?
师生共同小结:解决这类题目的关键是什么?引导学生结合具体情景,进一步探究解决问题的.方法。
教学例2。
教师:生活中这样的问题还有很多很多,你们看,(课件出示两位老师的谈话场景)去年我校的毕业生是200人,今年比去年增加了15%,今年毕业生有多少人?
教师:你们能用不同的方法解决这个问题吗?
鼓励学生画线段图分析,再试一试。
如果明年的毕业生人数比今年减少10%,学校明年毕业生有多少人?
学生独立思考解决问题,教师巡视了解学生思考的情况,并结合学生的探索适时给予点拨、引导。
教师:哪些同学解决了这一问题?谁来把他们的解决办法说给同学们听一听?
学生交流的过程中,教师利用评价引导学生用不同方法解决问题。
三、课堂活动
教师:同学们真聪明!能用不同的方法解决问题,而且还能清晰地叙述自己的解题思路!老师遇到了一个问题,想和你们一起讨论一下。
(课件出示书上课堂活动问题)
教师组织学生讨论、分析,重点说出原因。分析后,教师再组织学生计算验证。
四、课堂小结
教师:通过这节课的学习,你有哪些收获?还有什么问题?
[评析:教师用不同的方法引导学生完成例1和例2的学习。例1是在教师的启发下将学生所提出的问题引导到需要解决的问题上来,同时抓住了解决该问题的关键;例2教师充分考虑到学生的已有知识和经验,给学生足够的探索空间。在教学中教师充分利用评价的激励作用,鼓励学生大胆探索。]
【六年级数学上册第一单元教案】相关文章:
六年级上册数学第一单元教案01-05
六年级数学上册第一单元教案03-05
[精]六年级数学上册第一单元教案01-19
六年级上册数学单元教案01-07
六年级数学上册第一单元教案(6篇)03-05
六年级数学上册第一单元教案6篇03-05
六年级上册数学第一单元教案合集8篇01-05
六年级上册数学第一单元教案(通用15篇)07-06
六年级上册数学第一单元教案(通用14篇)08-21
六年级数学上册第一单元教案2篇【经典】11-28