圆数学教案

时间:2023-03-29 12:35:02 数学教案 我要投稿

圆数学教案15篇

  作为一位杰出的教职工,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编为大家收集的圆数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆数学教案15篇

圆数学教案1

  【教学内容】

  北师大版小学数学第十一册第一单元P16--18圆的面积

  【教学目标】

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

  【教学重点】

  能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  【教具准备】

  投影仪,CAI课件,等分好的圆形纸片。

  【学具准备】

  等分好的圆形纸片。

  【教学设计】

  【教学过程】

  【教学过程说明】

  一、 创设情境。提出问题

  (投影出示P16中草坪喷水插图)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

  生3:我补充一点,这个圆形的中心就是喷头所在的地方。

  师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?

  (让同学们充分发挥自己感官,估计草坪面积大小)

  2、用数方格的方法求圆面积大小

  ①投影出示P16方格图,让同学们看懂图意后估算圆的`面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  生1、我是根据圆里面的正方形来估计的,外面

  方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

  生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2

  而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、

  梯形面积分别是由哪些图形的面积来的吗?

  (学生回答,教师订正。

  那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什

  么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

  师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

  生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

  (学生在说的同时教师注意板书)

  师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

  生:等分为32份的更接近长方形。

  师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

  生:等分的份数越多,就越接近长方形。

  师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

  生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

  师:用字母怎么表示圆面积公式呢?

  生:S=RR

  生:还可以写作S=R2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  师:现在请大家用圆面积公式计算喷水头转动一周可

  以浇灌多大面积的农田。

  (学生独立解答,知名回答)

  四、应用圆面积公式解决实际问题

  1、P18,NO1

  学生独立解答,集体订正的时候要求学生说出每一步

  计算过程和依据。

  2、P18,NO2

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜

  结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

  五、小结

  师:谁能用自己的话说说圆面积的推导过程。

圆数学教案2

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B

  课件2:圆的周长与直径的商的关系

  课件3:祖冲之有关资料

  【教学设计】

  【教学过程 】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二 自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

  师板:线绕、滚动、拉直 化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的.方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  (厘米) 圆的直径

  (厘米) 周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之 )

  师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:Cd= C= C=d

  d=2r C=2 C2=r

圆数学教案3

  教学内容:

  四年级第一学期第74-76页

  教学目标:

  知识与技能:

  (1)初步认识圆,知道圆的各部分名称。

  (2)会正确使用圆规画圆。

  过程与方法:

  通过实践操作活动初步认识圆,进一步发展空间观念和初步的探索能力,能发现问题并进行探究。

  情感态度与价值观:

  体验到圆在日常生活中的应用并感受到圆的美。

  教学重点:

  通过操作和观察活动初步认识圆。

  教学难点:

  正确使用圆规画圆。

  教学准备:

  多媒体课件、一次性杯子、线、图钉、圆规、直尺、铅笔.?

  教学过程:

  激趣导入:

  出示:在我们生活中经常能看到圆。(媒体)

  举例:你还在哪些地方看见过圆?(学生介绍)

  师举例动态的圆:水滴落在平静的水面泛起的一个个圆形的波纹,这其实是一个动态的圆。(媒体展示动态的圆)

  揭示课题:生活中处处有圆。今天我们就来学习有关圆的知识。(板书课题:圆的初步认识)

  尝试探索:

  (一)尝试用各种工具画圆。

  师提供的工具:线、图钉、一次性杯子、棋子、尺。生自备圆规。

  学生尝试利用各种工具画圆。

  交流画法:

  利用圆形物体画圆

  利用线、图钉画圆

  利用圆规画圆

  我们来看看体育老师和数学老师上课的时候是怎么画圆的?

  比较各种方法

  你觉得用什么方法画的圆最标准?(用圆规画的圆最标准)

  (二)尝试用圆规画的圆,并认识圆心、半径。

  介绍圆规的构造。

  圆规它有两个脚,一个是带针尖的脚,另一个是带有铅笔的脚,还有一个把手,用来旋转的。

  学生尝试用圆规画圆。

  交流画法

  先用铅笔在画纸上点一点,再把圆规两脚分开一定距离,把有针尖的一脚固定在点上,捏住圆规的把手,把另一只装有铅笔的脚绕固定的点旋转一周。

  小组讨论用圆规画圆的要点。

  (板书:定圆心、定半径、绕一周)

  老师示范画圆

  小结:

  在圆中固定的那一个点叫圆心用字母O表示,圆上所有的点到圆心O都有相等的长度,叫圆的半径用字母r表示。(板书:圆心、半径)(在黑板上的圆中标出圆心和半径)

  (三)尝试画半径是2厘米的圆

  学生操作

  汇报交流画的过程

  同桌相互检验

  (四)探究圆心和半径的作用

  请学生在一张纸上任意画两个圆。

  出示同心圆,看了这两个圆你有什么想法?

  这两个圆一个大,一个小,这是因为两个圆的半径长度不一样。所以会一大一小。

  出示上下位置半径相同的两个圆,那这两个圆呢?

  这两个圆一个在上,一个在下,这是因为这两个圆的圆心位置不同,所以会一个在上,一个在下。

  为什么会出现这样的情况?

  因为这两个圆的.圆心位置不同,所以会一个在左,一个在右。因为它们的半径长度不一样。所以会一大一小。

  通过观察你能不能说说圆心、半径在圆中有什么作用?

  圆心决定了圆的位置,半径决定了圆的大小(板书)

  总结:

  在今天的学习活动中你有什么收获呢?

  拓展阶段:

  通过今天的学习活动,同学们知道了很多有关圆的知识。用圆可以设计出各种美丽的图案。(出示媒体)弯月、五环、小花,你想不想也来试试!那我们就来试试吧!

  板书设计:

  圆的初步认识

  定点 圆心 决定圆的位置

  定长 半径 决定圆的大小

  绕一周

圆数学教案4

  教学目标

  1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判定真假命题。

  2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。

  3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。共5页,当前第2页12345

  教学重点、难点和疑点

  1、重点:理解圆的有关概念。

  2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解。

  3、疑点:学生轻易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。

  教学过程设计:

  (一)阅读、理解

  重点概念:

  1、弦:连结圆上任意两点的线段叫做弦。

  2、直径:经过圆心的弦是直径。

  3、圆弧:圆上任意两点间的部分叫做圆弧。简称弧。

  半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;

  优弧:大于半圆的弧叫优弧;

  劣弧:小于半圆的弧叫做劣弧。

  4、弓形:由弦及其所对的弧组成的图形叫做弓形。

  5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆。

  6、等圆:能够重合的两个圆叫做等圆。

  7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

  (二)小组交流、师生对话

  问题:

  1、一个圆有多少条弦?最长的弦是什么?

  2、弧分为哪几种?怎样表示?

  3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?

  4、在等圆、等弧中,“互相重合”是什么含义?

  (通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)

  (三)概念辨析:

  判定题目:

  (1)直径是弦()(2)弦是直径()

  (3)半圆是弧()(4)弧是半圆()

  (5)长度相等的两段弧是等弧()(6)等弧的长度相等()

  (7)两个劣弧之和等于半圆()(8)半径相等的两个半圆是等弧()

  (主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用。)

  (四)应用、练习

  例1、已知:如图,ab、cb为⊙o的两条弦,试写出图中的所有弧。

  解:一共有6条弧。、、、、、。

  (目的:让学生会表示弧,并加深理解优弧和劣弧的概念)

  例2、已知:如图,在⊙o中,ab、cd为直径。求证:ad∥bc。

  (由学生分析,学生写出证实过程,学生纠正存在问题。锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识。)

  巩固练习:

  教材p66练习中2题(学生自己完成)。

  (五)小结

  教师引导学生自己做出总结:

  1、本节所学似的知识点;

  2、概念理解:①弦与直径;②弧与半圆;③同心圆、等圆指两个图形;④等圆和等弧。

  3、弧的表示方法。共5页,当前第3页12345

  (六)作业

  教材p66练习中3题,p82习题l(3)、(4)。

  第三、四课时圆(三)——点的轨迹

  教学目标

  1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

  2、培养学生从形象思维向抽象思维的过渡;

  3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的熟悉。

  重点、难点

  1、重点:对圆点的轨迹的熟悉。

  2、难点:对点的轨迹概念的熟悉,因为这个概念比较抽象。

  教学活动设计(在老师与学生的交流对话中完成教学目标)

  (一)创设学习情境

  1、对“圆”的形成观察——理解——引出轨迹的概念

  (使学生在老师的引导下从感性知识到理性知识)

  观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

  理解:圆上的点具有两个性质:

  (1)圆上各点到定点(圆心o)的距离都等于定长(半径的长r);

  (2)到定点距离等于定长的的点都在圆上;(结合下图)

  引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹。这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上。(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

  上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合。因此“到定点距离等于定长的点的轨迹”是圆。

  轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的'圆”。(研究圆是轨迹概念的切入口、基础和关键)

  (二)类比、研究1

  (在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

  轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

  轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

  (三)巩固概念

  练习:画图说明满足下列条件的点的轨迹:

  (1)到定点a的距离等于3cm的点的轨迹;

  (2)到∠aoc的两边距离相等的点的轨迹;

  (3)经过已知点a、b的圆o,圆心o的轨迹。

  (a层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;b、c层学生在老师的指导或带领下完成)

  (四)类比、研究2

  (这是第二次“类比”,目的:使学生的知识和能力螺旋上升。这次通过电脑动画,使a层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

  轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;共5页,当前第4页12345

  轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。

  (五)巩固练习

  练习题1:画图说明满足下面条件的点的轨迹:

  1。到直线l的距离等于2cm的点的轨迹;

  2。已知直线ab∥cd,到ab、cd距离相等的点的轨迹。

  (a层学生独立画图探索;然后回答出点的轨迹是什么,对b、c层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

  练习题2:判定题

  1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线。()

  2、和点b的距离等于5cm的点的轨迹,是到点b的距离等于5cm的圆。()

  3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线。()

  4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线。()

  (这组练习题的目的,练习学生思维的准确性和语言表达的正确性。题目由学生自主完成、交流、反思)

  (教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

  (六)理解、小结

  (1)轨迹的定义两层意思;

  (2)常见的五种轨迹。

  (七)作业

  教材p82习题2、6。

  探究活动

  爱尔特希问题

  在平面上有四个点,任意三点都可以构成等腰三角形,你能找到这样的四点吗?

  分析与解:开始自然是尝试、探索,主要应以如何构造出这样的点来考虑。最轻易想到的是,使一个点到另三个点等距离,换句话说,以一个点为圆心,作一个圆,其他三个点在此圆上寻找,只要使这圆上的三点构成等腰三角形即可,于是得到如图中的上面两种形式。

  其次,取边长都相等的四边形,即为菱形的四个顶点(见图中第3个图)。

  最后,取梯形abcd,其中ab=bc=cd,且ad=bd=ac,但是这样苛刻条件的梯形存在吗?实际上,只要将任一圆周5等分,取其中任意四点即可(见图中的第4个图)。

  综上所述,符合题意的四点有且仅有三种构形:①任意等腰三角形的三个顶点及其外接圆圆心(即外心);②任意菱形的4个顶点;③任意正五边形的其中4个顶点。

  上述问题是大数学家爱尔特希(p。erdos)提出的:“在平面内有n个点,其中任意三点都能构成等腰三角形”中n=4的情形。

  当n=3、4、5、6时,爱尔特希问题都有解。已经证实,时,问题无解。

圆数学教案5

  单元要点分析

  教学内容

  1.本单元数学的主要内容.

  (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.

  (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系.

  (3)正多边形和圆.

  (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.

  2.本单元在教材中的地位与作用.

  学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的`数学学习,尤其是圆锥曲线的学习的基础性工程.

  教学目标

  1.知识与技能

  (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.

  (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.

  (3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.

  (4)熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.

圆数学教案6

  一、教学目标

  【知识与技能】

  知道圆是轴对称图形,理解圆有无数条对称轴,并能正确找出圆的对称轴,能根据圆的对称轴确定圆心。

  【过程与方法】

  通过对圆的对称性的探究过程,提高动手操作能力,发展空间观念。

  【情感、态度与价值观】

  体会数学与生活的联系,提升学习数学的兴趣。

  二、教学重难点

  【重点】感受圆的对称性,会找圆的对称轴。

  【难点】确定一个圆的圆心的方法。

  三、教学过程

  (一)导入新课

  复习:带领学生复习什么是轴对称图形。组织学生列举一些生活中常见的轴对称图形。

  由上节课学习的圆,引出圆的对称性的探究。

  (二)讲解新知

  1.圆的对称性

  教师组织学生以同桌之间交流的方式,利用准备好的学具圆形卡片,通过折一折,探究圆是不是轴对称图形,如果是,又有几条对称轴,圆的对称轴有什么特点。

  学生通过探究发现:将圆沿直径对折,正好两边完全重合,所以圆是轴对称图形,且圆有很多条对称轴。

  师生总结:圆是轴对称图形,圆的直径所在的直线是对称轴,圆有无数条对称轴。圆的对称轴经过圆心。

  2.对称性的'再理解

  带领学生回忆所学习过的所有平面图形,并通过大屏幕展示,例如:正方形、长方形、三角形、等边三角形、等腰三角形、梯形、等腰梯形、平行四边形……

  组织学生以数学小组为单位,判断哪些是轴对称图形?分别有多少对称轴?并填写书上表格。

  学生汇报,教师总结:

  针对较难理解的平行四边形,教师进行整体展示,讲解平行四边形不是轴对称图形。

  3.圆心的确定

  组织学生思考如何确定一个圆的圆心,并提供学具圆形卡片,组织学生小组讨论。讨论结束后,教师找同学汇报结果。

  师生总结:将圆对折两次,两次对折的折痕有一个交点,交点即为圆心。

  (三)课堂练习

  找出下列图形的对称轴。

  针对较难理解的平行四边形,教师进行整体展示,讲解平行四边形不是轴对称图形。

  3.圆心的确定

  组织学生思考如何确定一个圆的圆心,并提供学具圆形卡片,组织学生小组讨论。讨论结束后,教师找同学汇报结果。

  师生总结:将圆对折两次,两次对折的折痕有一个交点,交点即为圆心。

  (四)小结作业

  小结:通过这节课的学习,你有什么收获?

  作业:找一找生活中还有哪些轴对称图形?并数一数它的对称轴有几条,之后与父母分享。

  四、板书设计

圆数学教案7

  教学目标:

  (1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

  (2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

  (3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

  教学重点:

  正多边形的概念与正多边形和圆的关系的第一个定理.

  教学难点:

  对定理的理解以及定理的证明方法.

  教学活动设计:

  (一)观察、分析、归纳:

  观察、分析:1.等边三角形的边、角各有什么性质?

  2.正方形的边、角各有什么性质?

  归纳:等边三角形与正方形的边、角性质的共同点.

  教师组织学生进行,并可以提问学生问题.

  (二)正多边形的概念:

  (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

  (2)概念理解:

  ①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….)

  ②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

  矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

  (三)分析、发现:

  问题:正多边形与圆有什么关系呢?

  发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

  分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

  (四)多边形和圆的关系的定理

  定理:把圆分成n(n≥3)等份:

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形;

  (2)经过各分点作圆的切线,以相邻切线的`交点为顶点的多边形是这个圆的外切正n边形.

  我们以n=5的情况进行证明.

  已知:⊙O中, ====,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.

  求证:(1)五边形ABCDE是⊙O的内接正五边形;

  (2)五边形PQRST是⊙O的外切正五边形.

  证明:(略)

  引导学生分析、归纳证明思路:

  弧相等

  说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

  (2)要注意定理中的“依次”、“相邻”等条件.

  (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

  (五)初步应用

  P157练习

  1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

  2.求证:正五边形的对角线相等.

  3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

  (六)小结:

  知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

  能力和方法:正多边形的证明方法和思路,正多边形判断能力

  (七)作业 教材P172习题A组2、3.

圆数学教案8

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。

  【教学目标】

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

  2、进一步理解轴对称图形的特征,体会圆的特征。

  3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

  【教学重、难点】

  1、圆的特征。

  2、同一个圆里半径与直径的关系。

  【教具、学具准备】

  1、三角尺、直尺、圆规。

  2、教学课件。

  【教学设计】

  教 学过程

  教学过程说明

  一、实践操作。

  1、折一折。

  每人准备一个圆,请同学们想办法找出圆心。

  2、小组活动:剪几个圆,折一折,你发现了什么?

  小组交流。

  3、汇报:沿着任意一条直径对折,都能完全重合。

  4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

  圆有无数条对称轴。

  在同一个圆里,直径的长度是半径的2倍,可以表示为d=2rr=d/2。

  二、尝试练习。

  1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?

  正方形:4条

  长方形:2条

  等腰三角形:1条

  等边三角形:3条

  圆:无数条

  2、要求学生剪出书本第7页做一做的'三幅图,沿中心点A转动,同学们发现了什么?

  三、巩固练习。

  1、练一练第一题。

  学生在书上填写,集体交流。

  2、练一练第二题。

  学生在书上填写,集体交流。

  3、练一练第三题。

  学生画出对称轴,集体交流。

  4、练一练第四题。

  学生实际测量,集体交流。

  5、练一练第五题。

  学生在书上填写,集体交流。

  使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

  引导学生整理已学过的轴对称图形。

  让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

  通过练习,进一步巩固所学知识。

  四、全课小结。

  【教学反思】

  学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

  存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!

圆数学教案9

  课 题:

  复习圆、轴对称图形,数学教案-复习圆、轴对称图形。

  教 学目标:

  1、使学生进一步掌握相关图形的特征及运算。

  2、使学生的空间观念和想象能力得到培养。

  教学重点:公式及计算。

  教学难点:技能技巧。

  教具准备:小黑板 幻灯机

  教学过程

  一、基本训练:

  1、口算:

  在听算本上听算《口算卡片》(38 )。

  (1) 统计3分钟以内做完的同学加以表扬,然后指名报答案。

  (2)全班统一核对,老师选重点点拨,集体订正。

  2、口答:

  指名回答上一节课所学知识。解答百分数应用题应该注意什么?

  二、进行新课:

  1、复习圆的概念。设计如下问题:

  (1)圆的圆心是如何确定的?

  (2)什么是半径、直径,同一个圆的半径和直径有什么关系?

  (3)不同的圆有不同的圆周率吗?

  (4)什么是圆的.周长?什么是圆的面积?

  2、复习圆的周长和面积的计算:

  (1)做143页的第11题。

  (2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。

  (3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。

  (4)在小黑板上出示如下问题:让学生口答。

  A、填空:圆周长是其直径的( )倍。

  大圆的半径是小圆的3倍,大圆的圆周长是小圆的( )倍。

  B、判断:圆周率等于3。14 ( )

  圆的面积大小只与半径的长短有关。 ( )

  集体讲评。

  3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

  三、巩固练习:

  1、做练习 三十五 的第23 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:图形的特点。

  2、做练习三十五 的第24 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:运用的公式。

  四、当堂检测:(当堂效果验收,是课堂作业)

  在A本上做练习 三十五 的第30 题。

  五、当天检测: (当天效果验收 ,是家庭作业)

  在B本上做练习三十九 的第28、29 题

  教后感:

  数学教案-复习圆、轴对称图形

圆数学教案10

  教材简析:

  圆是小学数学空间与图形领域里最后教学的一个平面图形,也是教学的惟一一个曲线图形。学生对平面上常见的直线图形的认识经验将有助于学生对曲线图形的认识,这也是学生对平面图形认知结构的一次重要拓展。通过圆的教学,本单元在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的策略和推理能力。全单元的教学内容分成四部分编排,本节课教学第9397页圆的形状特点以及圆心、半径和直径的认识。教学中采用由表及里、逐步深入,来体验圆的特征。例1通过说圆、画圆、感

  受圆与以前学过的平面图形的不同之处。教材里没有直接指出圆是曲线图形,把机会留给学生体验和交流。这样,学生在直观认识圆的`基础上深入了一步。例2通过用圆规画、用尺量来教学圆心、半径、直径,使学生能更准确地把握圆心、半径、直径的概念。例3安排学生通过画、量、折等活动,深入体验圆的特征。练习十七在安排练习基础知识的同时,让学生进一步体会圆,开展数学思考,发展空间观念。

  特别说明:由于本届五年级学生还没有使用苏教版国标本教材,因此,在实际教学中有关轴对称及平移,旋转的内容无法涉及。

  教学目标:

  1.知识与技能目标:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

  2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。

  3.情感与价值观目标:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

  教学重点:认识圆及其特征,让学生初步学会用圆规画圆。

  教学难点:画圆,用圆的知识来解释和解决有关实际问题。

  课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件

  教学过程

  一、创设情境,初步感知圆

  1.课前交流:略

  2.导入新课:

  (1)(指着物体上的圆)这种形状叫

  (2)生活中你在哪儿见过圆?

  二、自主合作,初步认识圆

  1.画圆。

  (1)学生借助物体画圆。

  (2)用圆规试着画一个圆,然后组织学生交流用圆规画圆的方法:定长、定点、旋转一周。

  (3)用圆规规范地画圆、剪圆,让学生再次感受圆是由曲线围成的。

  (4)比较得出:圆是由曲线围成的平面图形。

  2.认识圆的特征

  (1)认识圆心、半径、直径

  ①观察剪下来的纸圆,组织学生在交流中认识圆心,并知道常用字母0表示。

  ②通过让学生折圆,使学生进一步感受圆心的特征。

  ③通过让学生画一画、比一比纸圆上的折痕,交流有什么发现,从而认识圆的半径和直径的概念。

  (2)认识圆的特征

  ①组织学生通过小组合作学习,自主探索圆的有关特征。

  ②完成填表题和判断画圆,让学生知道圆的大小和半径或直径有关。

  ③教师小结有关内容。

  三、联系实际,初步应用圆。

  1.广场花坛喷水装置的设计,如果你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?巩固圆心的作用。

  2.车轮为什么要设计成圆的?车轴为什么要装在圆心?

  3.这是一个球场,要在中间画这样一个圆要用哪些工具?怎么画?

圆数学教案11

  活动目标

  能从活动中体验圆与半圆、椭圆之间的异同,拼出自己感兴趣的物体。

  培养幼儿对数学活动的兴趣。

  认识半圆和椭圆,能从许多图形中找出这两种图形,并能点数其数量。

  活动准备

  用几种图形拼成的金鱼、熊猫等。

  操作材料每人一份。

  圆,半圆,椭圆,数量若干(每种同类图形的`大小,颜色有区别,如有红圆,绿圆,大圆小圆等)。

  活动过程

  一、认识半圆和椭圆,区分他们与圆的不同。

  1.认识半圆,并与圆做比较。

  (出示圆)这是什么?圆宝宝会变魔术,看看他变成了什么?半圆和圆有什么不一样?

  2.认识椭圆并与圆做比较。

  圆宝宝又要变了,现在又变成了什么?

  (出示椭圆)谁知道这个图形叫什么?椭圆和圆有什么不同?

  二、游戏:看谁拿的对。

  游戏:每个幼儿手拿一个圆形(圆、半圆或椭圆)。

  例如:教师说圆宝宝,手拿圆形的小朋友把手举高并大声说我是圆形。

  三、在拼贴的图形中找出半圆和椭圆,并用电子表现其数量。

  1.出示拼贴好的金鱼,让幼儿找一找哪里是半圆和椭圆,并能数出他的圆、半圆和椭圆的数量,并用数字来表示。

  2.出示拼贴好的熊猫,让幼儿找一找哪里是半圆哪里是椭圆形,并能数出他的圆、半圆和椭圆的数量,并用数字来表示。

  四、幼儿操作,展示幼儿作品。

圆数学教案12

  活动目标

  1.能说出球体的名称,知道球体的外形特征,即不论从哪个方向看球体都是圆的,不论向哪个方向它都能转动。

  2.发展幼儿的观察力、空间想象能力。

  活动准备

  1.ppt课件:球和圆

  2.幼儿观察用乒乓球、圆片纸、圆柱操作材料。

  活动过程

  一、观察比较“球和圆”。

  1.课件演示:球和圆

  小朋友,看看图片上是什么?

  (球,乒乓球)

  再看看这张图片上是什么?

  (圆片,圆形图案)

  2.请幼儿拿乒乓球,从上(下)面、前(后)面、左(右)边等方向看乒乓球是什么形状的。

  请幼儿观察后回答。

  小结:乒乓球从各个方向看,它都是圆的。

  3.请幼儿拿圆片纸,比较圆片纸和乒乓球的不同,进一步了解球体的特征。

  引导幼儿从各个方向看圆片纸,从旁边看是一条线,幼儿观察回答。

  二、通过操作,感受球体。

  1.把球放在桌子上,让幼儿玩球。

  注意不要让球离开桌面,引导幼儿把球向前(后)、向左(右)等方向滚动。

  2.启发幼儿知道,球能向各个方向滚动。

  小结:球体的外部特征,从各个方向看都是圆的,能往各个方向滚动的,这样的形状叫球体。

  三、找球体

  1.课件演示

  找找哪个是球体,为什么?

  让幼儿互相说一说。

  2.找找哪些东西是球体的?

  请幼儿想想并找找日常生活中哪些东西的球体形状的?

  说说为什么要做成球体形状?

  大班数学活动:认识“”和“”幼儿园大班数学教案

  班数大学活动:认识“>”和“<”

  设计思路:

  对中班幼儿来说,“>”和“<”看起来很抽象,实际上只要让他们记住开口的方向,学习起来就容易多了,并且能增强他们学习的兴趣和积极性,本活动意在为幼儿创造一个良好的学习氛围。第一,根据“>”和“<”比较形象的.特点,通过儿歌和身体感知,让幼儿记住开口的方向;第二,以游戏贯穿活动内容。

  活动目标:

  1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。

  2、学习把不等式转变为等式。

  3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际

  问题的能力。

  活动准备:

  1、7只蜜蜂,5只蝴蝶的图片。

  2、4朵红花、六朵黄花的图片。

  3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。

  4、数字头饰两套,小猴子头饰若干。

  5、数字小兔图一张,有关数字卡若干。

  6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。

  活动过程:

  一、导入课题:认识“>”和“<”

  1、问:“小朋友,现在是什么季节?”(春季)“春天来了,蜜蜂蝴蝶飞呀飞呀,飞到我们幼儿园里来了,大家看一下,飞来了几只蜜蜂?几只蝴蝶?”教师展示蜜蜂和蝴蝶的图片,幼儿说出数量,教师贴上相应的数字卡。

  问:“蜜蜂和蝴蝶比,谁多?谁少?”“那么,7和5相比,哪个数字大?哪个数字小?”

  师:“我们可以在7和5之间放一个符号,让人一看就知道哪边的数字大,哪边的数字小。我们以前学过‘=’号,能放‘=’号吗?”启发引导幼儿,引出“>”,重点引导幼儿观察大于号像张着嘴巴对着大数笑,大于号表示前边的数比后边的数大,初步理解大于号的含义,说出“7”大于“5”。

  2、问:“蜜蜂和蝴蝶的家在哪里?”(花园里),展示红花和黄花的图片,让幼儿感知其数

  量的不同,引出“<”,重点观察小于号像是在向左弯腰,撅着屁股的样子,屁股撅给小数瞧,小于号表示前边的数比后边的数小,说出“4小于6。”

  3、师:“大于号和

  小于号都有一个开口,长得也差不多,我们怎样记住它们呢?你们有什么好办法吗?”启发幼儿找出内在规律:“小朋友可以看一下,无论是大于号还是小于号,它们开口的方向都对着哪一个数(大数),尖尖的小屁股对着哪一个数(小数)。”

  学习儿歌:大于号,开口朝着大数笑,小于号屁股撅给小数瞧。

  二、表演游戏:学做“>”“<”

  请2名幼儿做数字娃娃,戴上数字头饰,一幼儿站在两个数字中间,用身体姿势表演>”“<”,幼儿读出“6大于4“4小于6。”

  设计思路:大班数学活动:认识“>”和“<”设计思路:

  对中班幼儿来说,“>”和“<”看起来很抽象,实际上只要让他们记住开口的方向,学习起来就容易多了,并且能增强他们学习的兴趣和积极性,本活动意在为幼儿创造一个良好的学习氛围。第一,根据“>”和“<”比较形象的特点,通过儿歌和身体感知,让幼儿记住开口的方向;第二,以游戏贯穿活动内容。

  活动目标:

  1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。

  2、学习把不等式转变为等式。

  3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际问题的能力。

圆数学教案13

  教学目标:

  1、初步认识圆,了解圆的基本特征。知道什么是圆心、半径和直径,以及半径和直径之间的关系。

  2、通过观察、操作、交流等活动,发展学生的空间观念,培养学生的思维能力。

  3、感受圆之美,渗透数学文化。

  教学重点:知道什么是圆心、半径和直径,以及半径和直径之间的关系。

  教学难点:了解圆心、半径和直径,以及半径和直径之间的关系。

  教具、学具准备:圆形物体、简易的画圆工具、圆规、直尺

  教学过程:

  一、引入新课

  1、播放动画:平静的水面丢进小石子,泛起圆形的波纹。

  师:生活中,你还在哪儿见过圆?(生举例)

  出示:在一切平面图形中,圆最美。(图片欣赏)

  2、了解圆与其他平面图形的区别,感知圆的特征,并揭示课题。

  【通过感知生活中的圆,唤起学生相关的生活经验,体会到圆在生活中无处不在,感知圆形的美。通过观察圆与其他平面图形的区别,初步感知圆的特征,激发学生主动学习的欲望。】

  二、新知学习

  (一)画圆

  1、尝试画圆,初步感知圆的特征。

  学生可能出现的画圆方法:

  (1)用圆形物体描圆;

  (2)利用老师制作的画圆工具画圆;

  (3)用圆规画圆。

  2.学生第二次用圆规画圆,深化认识。

  (集体学习,同伴互助学习用)

  板书:定点、定长、旋转一周。

  师:你们有没有见过体育老师在操场上是怎么画圆的'?(课件展示)

  老师也可以仿照体育老师的方法,利用绳子和粉笔在黑板上画圆,你有什么要提醒老师的?

  【通过学生自主画圆与教师的示范画圆,使学生的思维形成梯度,有利于学生对圆的本质的理解,并为下面进一步认识圆的特征做好铺垫。】

  (二)认识圆心、半径和直径

  1、教师用圆规画一个圆。

  2、揭示圆心及半径,进而介绍各自的字母表示。

  3、思考:半径有多少条?长度怎样?你是怎么发现的?

  4、介绍墨子的发现

  早在二千多年前,我国古代思想家墨子在他的著作《墨经》中这样写道:“圆,一中同长也。”(媒体出示)

  你是如何理解所谓“一中”和“同长”的?

  5、由“同长”引出直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

  【通过介绍中国古代思想家的研究成果,揭示出圆各部分的名称及基本特征,同时让学生感受圆所包含的文化内涵。】

  三、巩固练习

  1、判断

  (1)画圆时,圆规两脚间的距离是半径的长度。()

  (2)半径3厘米的圆比直径6厘米的圆小。()

  (3)同一个圆中,所有的直径都相等。()

  (4)两条半径一定能组成一条直径。()

  (5)判断下面两幅图,那幅图在画圆时体现出定点的作用,那幅图体现出定长的作用。(出示图片:奥运五环和射击靶)

  2、出示古代的阴阳太极图

  想知道这幅图是怎么构成的吗?原来它是用一个大圆和两个同样大的小圆组合而成的。现在,如果告诉你小圆的半径是5厘米,你又能知道什么呢?

  【通过练习,巩固所学的知识,体现数学学习的价值。】

  课堂小结。

  拓展提升,在比较中深化认识。(机动)

  1、体会正多边形与圆之间的内在联系

  【比较圆与正多边形的关系,体会曲线图形与直线图形的内在联系,提高学生的认知水平。】

圆数学教案14

  学习目标:

  1. 了解圆的定义,理解弧、弦、半圆、直径等有关圆的概念.

  2. 从感受圆在生活中大量存在到圆形及圆的形成过程,探索圆的有关概念.

  重点、难点:

  1、 重点:圆的相关概念

  2、 难点:理解圆的相关概念

  教学过程:

  [课前预习]

  1、知识准备

  (1)举出生活中的圆的例子.

  (2)圆既是 对称图形,

  又是 对称图形。

  (3)圆的周长公式C=

  圆的面积公式S=

  2、探究

  (1)圆的定义1:在一个平面内,线段OA绕它固定的一个端点O旋转 ,另一个端点所形成的图形叫做 .固定的端点O叫做 ,线段OA叫做 .以点O为圆心的'圆,记作“ ”,读作“ ”

  决定圆的位置, 决定圆的大小。

  圆的定义2:到 的距离等于 的点的集合.

  (2)弦:连接圆上任意两点的 叫做弦

  直径:经过圆心的 叫做直径

  (3)弧: 任意两点间的部分叫做圆弧,简称弧

  半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆

  优弧: 半圆的弧叫做优弧。用 个点表示,如图中 叫做优弧

  劣弧: 半圆的弧叫做劣弧。用 个点表示,如图中 叫做劣弧

  等圆:能够 的两个圆叫做等圆

  等弧:能够 的弧叫做等弧

  [课堂活动]

  活动1:预习反馈

  活动2:典型例题

  例1 如果四边形ABCD是矩形,它的四个顶点在同一个圆上吗?如果在,这个圆的圆心在哪里?

  例2 已知:如图,在⊙中,AB,CD为直径

  求证:

  活动3:随堂训练

  1、 如何在操场上画一个半径是5m的圆?说出你的理由。

  2、 你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年轮。把树木的年轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?

  活动4:课堂小结

圆数学教案15

  1、基础练习:计算下面各图形的周长和面积。只列式,不计算。(P128图略)

  2、火眼金睛。(判断对错)

  ①一个三角形,底6分米,高5分米,它的面积是30平方分米。()

  ②一个边长5米的正方形,它的面积是20平方米。()

  ③一个圆,直径是2厘米,它的面积是12.56平方厘米。()

  3、对号入座。

  ①边长是4米的正方形,()

  A周长面积;B周长面积;C周长=面积;D周长和面积无法比较

  ②一个平行四边形和一个三角形等底等高,已知平行四边形的面积是25平方厘米,那么三角形面积是()平方厘米。

  A、5B、12.5C、25D、50

  4、走进生活。

  ①假如你家里要在一块边长2米的正方形木板上,剧一个最大的圆用来做饭桌面,请你算出这个圆面的面积并说出理由。

  ②设计比演,时间3分钟。现在请你来当小设计师,发挥你的设计才能,运用这几种平面图形对学校正门前的.空地的布局进行重新规划设计,我们看看谁的设想既美观又合理。(注:设计时可以把图形进行组合)

  (1)小组在白纸上进行设计。汇报:用什么图形设计出了什么?

  (2)你准备怎样计算你设计中这些图形的周长和面积呢?

  七、全课小结。通过同学们的认真学习,大胆创新设计,我相信你们当中有很多同学会成为杰出的设计师。

  八、作业。把你的设计完成,并写出每个图形的周长和面积的计算。

  九、板书设计:(电脑演示)

  平面图形的周长和面积

  贴卡片ac=4a

  s=a2hbc=a+b+h

  aas=ah2

  b

  ac=2(a+b)

  c=2(a+b)s=ahac=a+b+c+d

  s=abcd

  bs=(a+b)h2

  c=2лr;s=лr2

  (联系转化应用)

【圆数学教案】相关文章:

圆数学教案03-29

数学教案-圆09-29

数学教案-圆和圆的位置关系09-29

圆的面积的数学教案01-21

初中数学教案《圆》03-05

数学教案-圆的周长09-29

《圆的认识》小学数学教案01-19

数学教案-圆的认识(二)09-29

数学教案-圆的认识(一)09-29