数学五年级下册第二单元教案

时间:2023-03-17 08:16:03 数学教案 我要投稿

数学五年级下册第二单元教案15篇

  在教学工作者开展教学活动前,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?下面是小编收集整理的数学五年级下册第二单元教案,欢迎阅读,希望大家能够喜欢。

数学五年级下册第二单元教案15篇

数学五年级下册第二单元教案1

  教学内容:人教版小学数学五年级下册地14-15页

  教学目标:

  知识和技能

  1、借助分类思想使学生理解并掌握质数和合数,并能准确判断一个数是质数还是合数。

  2、能在百数表中正确找出100以内的质数,熟记20以内的质数。

  问题解决与数学思考

  引导学生运用“阅读理解题意-分析解答-回顾反思”的方法推导出奇数加奇数的和是偶数,奇数加偶数的和是奇数,偶数加偶数的和还是偶数的结论,培养学生解决问题的能力。

  情感、态度和价值观

  1、在体验和探究的过程中,要注重全体学生的参与性,让学生感悟数学活动充满着探索与创新感受数学文化的魅力,培养学生勇于探索的科学精神。

  2、在教学活动中,培养合作学习意识,同时注意培养学习数学的自信心,进一步培养学生的学习习惯。

  重点和难点

  重点:

  1、理解质数和合数的意义。

  2、掌握“阅读理解题意-分析解答-回顾反思”解决问题的方法。

  难点:区分奇数、偶数、质数、合数。

  教具:小黑板

  教学设计

  一、复习引入

  1、(小黑板出示)1-20的各数中,看到者需数字你能想到最近我们学了哪些知识?

  1,3,5,7,9,11,13,15,17,19是什么数?

  2,4,6,8,10,12,,14,16,18,20是什么数?

  2,4,6,8,,10,12,14,16,18,20还是什么的倍数?

  5,10,15,20都是什么的倍数?

  3,6,9,12,15,18都是什么的倍数?

  10,20既是什么的倍数,也是什么的倍数?

  ………

  同学们能从不同角度来观察、分析、回答这些问题,说明你们做的太棒了,今天我们继续来研究这些可爱的数字,我相信你们一定会有新的收获和意想不到的发现。

  二、组织研究,体验发现

  1、说明方法

  师:你们提出的数学问题很有价值,怎么研究这些问题呢?先让我们来共同回忆以前研究数的方法,哪位同学先来说一说,该怎么做?

  我们一般是找一组数据,再观察,讨论,找出它们的共同点。

  2、小组合作研究

  科学的论证都来自于实践,下面就请同学们以1-20这些数入手来共同研究质数和合数的相关知识。

  小组合作提示:

  找出这些数的因数有哪些?

  仔细观察这些数的因数的个数,会有什么发现?

  根据因数的个数把这20个数进行分类,小组交流。

  3、老师巡视合作情况,点名学生汇报

  2的因数有(1,2)

  3的因数有(1,3)

  4的因数有(1、2,4)

  5的因数有(1、5)

  6的因数有(1,2,3,6)

  7的因数有(1,7)

  8的因数有(1,2,4,8)

  9的因数有(1,3,9)

  10的因数有(1,2,5,10)

  11的因数有(1,11)

  12的因数有(1,2,3,4,6,12)

  13的因数有(1,13)

  14的因数有(1,2,7,14)

  15的因数有(1,3,5,15)

  16的因数有(1,2,4,8,16)

  17的因数有(1,17)

  18的因数有(1,2,3,6,9,18)

  19的因数有(1,19)

  20的因数有(1,2,4,5,10,20)

  前面我们根据什么,就把自然数分为了哪两种数?

  而现在我们找的是1至20里的什么数呢?

  我们又可以根据什么数的个数,又可以把自然数分为几类呢?

  第一类是只有一个因数的:1

  第二类是有两个因数的:2,3,5,7,11,13,17,19。

  第三类是有两个以上因数的:4,6,8,9,10,12,14,15,16,18,20。

  你们的发现特别有价值说明你们有很强的观察能力。下面还有哪个小组也这样分?

  4、总结概念

  像上面这样,只有1和它本身两个因数的数,就叫质数。也叫素数;除了1和它本身还有别的因数的数就叫合数。

  哪1呢?

  1不符合质数的特征,也不符合合数的特征,所以,它既不是质数,也不是合数。

  师:谁来说一说0属不属于上面三种里面的哪一种呢?

  师:0虽然是自然数。上面的三种是“除0以外的自然数,按它的因数个数来分”。而我们前面学因数和倍数时就特别说明,所研究的数是指非0自然数。0不属于我们研究的数,所以它都不属于三种里的任何一种。

  5、找百以内的质数

  (1)让学生小组合作找,教师巡视。

  (2)点名说一说怎么找。

  (3)时引导学生找。

  (4)、请学生说说找的方法。

  6、师引领总结叙述:自然数按不同的标准分类就会有不同的结果,如:按因数的`个数可以把自然数分为几类?(三类,既质数、合数和1三类);如果按是不是2的倍数可以把自然数分为几类?(两类,既奇数和偶数两类)。下面的结果是奇数还是偶数呢?请大家以小组为单位进行研究。出示例2:奇数+奇数=什么数

  偶数+偶数=什么数

  奇数+偶数=什么数

  小组活动提示:

  (1)从题目中你知道了什么?

  (2)你用什么方法可以推导出结果?

  (3)你的结论正确吗?你怎样证明?

  学生小组合作讨论,教师巡视指导。

  师:哪个小组来说说你们是怎么研究的?

  从题目中谁知道要解决的问题是把什么数和数什么相加,什么数和什么数相加,什么,看加的结果是奇数还是偶数?

  可不可以举例子来说明呢?

  “解决这个问题很简单,所采用的方法和刚开始上课时所用的方法一样,先找一组数据,找出其中的奇数和偶数,然后用其中的数据来证明就行了吧”。

  例、1,2,3,4,5,6,7。然后来证明。

  奇数+奇数=偶数(1+3=41+5=61+7=8)

  偶数+偶数=偶数(2+4=62+6=84+6=10)

  奇数+奇数=奇数(1+2=31+4=51+6=7)

  还可以用什么方法来证明?。

  那我们来在黑板上演示一下。

  还可以举一些大数试一试,如:235+123=358246+368=614123+248=371)得到的结论还是和上面一样。

  三、巩固练习

  1、请你来判断。

  (1)所有的奇数都是质数。()

  (2)所有的偶数都是合数。()

  (3)在1,2,3,4,5,……中,除了指数以外都是合数。()

  (4)1既不是质数也不是合数。()

  2、根据所给提示写电话号码

  师:你想知道我的手机号码吗?

  它是最小的奇数()

  它的最大因数和最小倍数都是3()

  它是10以内最大的质数()

  它是10以内中既是2的倍数又是3的倍数()

  它是10以内3的最大倍数()

  它是最小的合数()

  它是所有非0自然数的因数()

  它是从小到大排列的第五个自然数()

  它是10以内的自然数中相邻的合数,而且是第一个合数()

  它是10以内中3的最大倍数()

  它既不是质数也不是合数()

  四、作业布置(课本练习四的1-4题)

  五、课堂小结

  1、这节课学了什么知识?

  2、质数和合数是按什么来分的?

  板书设计

  质数和合数

  奇数偶数

  质数合数1

  自然数按什么来分而分为奇数和偶数?

  自然数又按什么来分又可以分为质数和合数、1呢?

数学五年级下册第二单元教案2

  教学目标

  1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。

  2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。

  3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重难点

  1.掌握质数与合数的概念。

  2.熟练记忆100以内的质数。

  教学过程:

  一、复习导入

  1.什么叫奇数?什么叫做偶数?

  是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。

  2.请说一说20和5的因数各有哪些?

  有的数的因数个数多,有的数因数个数少。一个数最小的'因数是1,最大的因数是它本身。

  【设计意图】

  通过练习找一个数的因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。

  二、探究新知

  1.找出1~10各数的因数。

  1的因数有:1。

  2的因数有:1,2。

  3的因数有:1,3。

  4的因数有:1,2,4。

  5的因数有:1,5。

  6的因数有:1,2,3,6。

  7的因数有:1,7。

  8的因数有:1,2,4,8。

  9的因数有:1,3,9。

  10的因数有:1,2,5,10。

  2.按因数的个数分,你可以分成几类?

  只有一个因数:1

  只有两个因数:2、3、5、7

  有两个以上个因数:4、6、8、9、10

  3.明确概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。

  注意:

  1不是质数,也不是合数。

  4.100以内的质数表。

  5.100以内质数顺口溜。

  2和3,5和7,11、13又17,

  19、23、29、31,37和41,

  43、47、53、59、61,67和71,

  73、79、83、89、97.

  【设计意图】

  通过质数表和顺口溜让学生熟练记住100以内的质数。

  6.想一想:最小的质数和最小的合数分别是多少?

  三、课堂练习

  1.判断下面说法是否正确?

  (1)所有的偶数都是合数。

  (2)所有的奇数都是质数。

  (3)3的所有倍数都是合数。

  (4)一个合数,最少有3个因数。

  (5)1既不是质数,也不是合数。

  2.将下面各数分别填入指定的圈里。

  2737415861738395

  11143347576287999

  3.思维训练。

  两个质数,和是9,积是多少?

  四、课堂总结

  通过本节课学习你有哪些收获?

  教后思考:

数学五年级下册第二单元教案3

  教学目标:

  1、能够找出数量间的等量关系,列出方程;

  2、根据等式的性质,解方程。

  教学过程:

  一、等量关系

  用含字母的式子表示出题中的数量关系;

  找出数量间的等量关系,再列方程。

  单价×()=总价工作时间=()÷()

  ()×时间=路程()×数量=总产量

  三角形面积=()×()÷2 长方形面积=()×()

  正方形周长÷()=边长(上底+下底)×()÷()=梯形面积

  长方形周长=(+)×2 平行四边形面积=()×()

  二、列方程解应用题

  列方程解应用题的一般步骤是

  (1)弄清题意,找出(),并用()表示;

  (2)找出应用题中()的相等关系,列方程;

  (3)();

  (4)检验,写出()。

  常用关系:付出的钱数—()=找回的钱数

  已修的.米数+()=总共要修的米数

  总路程—()=剩下的路程

  三、归纳总结,布置作业

数学五年级下册第二单元教案4

  教学内容

  教科书第59页与复习第1,2题。

  教学目标

  1.通过和复习,进一步理解长方体和正方体相关知识的内在联系,并能灵活运用。

  2. 在同学们对这些形体认识和理解的基础上,进一步培养空间观念。

  3. 在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养同学们的

  合作意识和创新。

  教学重点

  灵活运用知识解决实际问题。

  教具学具

  师:长方体、正方体模型各一个,多媒体课件。

  生:长方体、正方体模型各一个。

  教学过程

  一、回忆所学知识

  师:(出示长方体和正方体模型)同学们对这两个物体一定很熟悉吧。它们一个是长方体,一个是正方体。关于长方体和正方体你都了解了哪些知识?

  学生回答,回顾本单元的知识点。

  教师根据学生的回答,把本单元的主要知识点出示在黑板上。

  二、系统本单元的知识

  1. 揭示课题

  师:今天这节课,我们就一起来对长方体和正方体的有关知识进行和复习。

  2. 对知识点进行分类,做好铺垫

  师:关于这一单元,我们应该从哪几方面进行呢?

  生:我认为应该从长方体和正方体的特征、表面积和体积三个方面进行。

  3. 分组

  师:接下来,同学们以小组为单位,把这些知识点从正方体和长方体的特征、表面积和体积三

  个方面进行,在时请将你的友情提示和你们还没解决的问题提出来。现在由组长执笔,把你们的内容记录在纸上。

  学生分组进行交流。

  在学生交流的过程中,教师巡视,对得有特色的小组,教师要心中有数,便于稍后的交流。

  4. 学生汇报

  师:哪个小组愿意把你们组的结果拿到前面来展示展示?

  学生展示的同时要介绍一下的内容。

  (第一小组介绍完以后)师:听了他们组的介绍,你能不能对他们的进行?

  其他小组分别,时既要说一说优点,也要指出不足。

  师:哪个小组还愿意将你们组的结果向大家展示一下?

  教师请几组上来展示,时先肯定他们的努力,以寻找优点为主,指出不足为辅,激发学生

  的积极性。

  5. 归纳

  师:刚才,同学们互相合作,出了长方体和正方体这一单元的主要内容,并且坦诚地对各

  小组的进行了。对于这一单元的知识,你还有需要提醒同学们注意的地方吗?

  学生自由发言。

  [简评:知识是为了查漏补缺,教师在让学生时要鼓励学生大胆暴露自己的问题,寻求同伴的帮助。只有这样,才能达到提高的效果。学生在交流时,即要尊重同学的劳动成果,又要发现同学的不足。怎样处理这一对矛盾,可以借鉴这位老师的一些做法。]

  三、练习提高

  1. 基础练习

  师:接下来,我们就利用刚才的知识解决一些实际问题。

  (1)判断。

  ①棱长为6cm的正方体的表面积和体积相等。()

  ②把一个长方体分成相等的两部分,它的`体积大小不变,所以表面积不变。()

  ③两个长方体的体积相等,表面积也一定相等。()

  (2)填空。

  ①5800mL=()L=()dm3。

  ②一个保温瓶能装水4()。

  ③一个长方体有个顶点,在长方体的一个顶点上相交了条棱,这三条棱分别叫做长方体的()、

  ()、()。

  (3)学生独立完成第59页第2题。

  2. 实践练习

  小正方体拼合,体积、表面积的变化情况。

  (1)课件演示:将5个棱长是2cm的小正方体合成一个大正方体,体积和表面积又有怎样的变

  化?

  (2)从这个实验中,你感受到了什么?

  四、课堂

  这节课复习了什么?你有哪些收获?

  [简评:让学生自己回忆和知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系,使知识在孩子们的头脑中形成络,进一步提高学生复习的能力。而让他们自由地独立设计或合作设计,也较大程度地激发了学生的创造性与合作性。知识的练习要针对本单元的重难点,有层次的设计使不同层次的学生都有所收获。

数学五年级下册第二单元教案5

  教材分析

  质数与合数是小学数学人教版五年级下册的内容。

  本节课的内容是在学生已掌握了因数倍数奇数和偶数的基础上,引入质数合数两个新概念。这部分内容也是学习求最大公因数和最小公倍数的基础。

  教学目标

  1.理解和掌握质数合数的意义,初步掌握判断一个数是质数还是合数的方法。

  2.使学生经历探索质数合数的过程,培养学生归纳概括能力。

  3.学会与人合作交流,培养解决问题的优化意识。

  教学重点:理解质数合数的含义,能正确判断一个数是指数还是合数。

  教学难点:能运用一定的方法从不同角度判断感悟质数合数。

  教学过程:

  一、创设情境,提出问题。

  师:“六一”儿童节快要到了,有18个学生要参加表演,表演节目分组排演,老师准备将18人分成人数相等的几个小组。现在请同学们想一想,分一分,试试有几种不同的分法?怎样分合适?

  二、自主探究,探索新知

  学生先独立思考,再小组合作交流,学生基本有以下几种解决问题的方案:

  1.直观操作。用圆片代表人,操作演示。

  2.除法计算。如18÷ 2 = 9,将18人平均分成2组,每组9人。

  3.分解因式。18=1×18=2×9=3×6。

  三、交流反馈,深入研究

  学生全班交流解决问题的方法,说一说自己的方法和理解。研究出6种结果:

  1人一组,可分18组;

  2人一组,可分9组;

  3人一组,可分6组;

  6人一组,可分3组;

  9人一组,可分2组;

  18人一组,可分1组。

  通过小组交流得出,如何分组可根据实际情况来定,如表演相声可2人一组,若表演课本剧6人一组比较合适,如果表演舞蹈,可以9人一组,分成2组等等。

  师:同学们勤于思考,善于动脑,想出了这么多的方法解决分组问题,你最喜欢哪种方法,说说你的理由。

  四、拓展新知,归纳概念

  师:如果参加表演的人数是13人,按同样的要求则有几种分法?

  学生发现,无论怎么分,都只能是:一种是一人一组,分成13组,另一种只能是13人一组,而学生又觉得这两种分法都不是很合适。于是产生新的问题:为什么将18人分成人数相等的小组就有多种分法,而将13人分成人数相等的小组就只有两种呢?通过观察思考发现18可以写成18=1×18=2×9=3×6,而13只能写成13=1×13或者13=13×1,也就是说18的因数有多个,而13的因数只有两个。那么在整数中是否还有这样的数,它的因数只有1和它本身呢?

  师:有一类整数,它的因数只有1和它本身,在数学中我们称它为质数。另一类整数,它的因数除了1和它本身以外,还有其他的因数,像这样的数我们称它为合数(出示课题)。就像我们刚才讨论的这两个数中,18是合数,而13是质数。你能根据合数和质数的特征举例说说质数和合数吗?

  五梳理知识,理解概念

  1.师:刚才我们已经认识了质数和合数,请再和你的'同桌说一说:什么叫质数?什么叫合数?(学生互相说概念。)

  师:我们知道了什么样的数是质数,下面来做个小游戏。每个学生在白纸上写下自己的学号。

  师:你的学号如果是50以内的质数,请你起立。

  (学号是50以内质数的学生起立。)

  集体订正:站错的同学,明确用找因数个数的方法来判断是否是质数。

  师:请你们将50以内的质数按照从小到大的顺序排列起来。

  师:你的学号如果是50以内的合数,请你起立。

  (学号是50以内合数的学生起立。)

  随机采访:请学生说一说自己所拿的学号为什么是合数?

  师(询问学号是1的同学):你为什么两次都没起立?

  生:因为我的学号1既不是质数,也不是合数。

  (引导学生理解1没有2个不同的因数。)

  (板书:1既不是质数也不是合数。)

  2.判断一个数是质数还是合数,关键是什么?以其中一个为例,说出判断过程。

  3.判断一个数是不是质数时,需要把它的所有约数都找出来吗?为什么?

  交流明确:除2外,2的倍数都是合数;

  3的倍数都是合数,但3本身除外;

  5的倍数都是合数,但不包括5。……

  小结方法:判断一个数是否是合数,可以用能被2、3、5整除的数的特征去判断,有时还可以用7、11……去判断。

  4.找出50~100的质数(分组找数,提炼方法)

  分组找质数:五个组分别研究51~60的数、61~70的数、71~80的数、81~90的数、91~100的数。

  板演找到的质数:53、59;61、67;71、73、79;83、89;97。

  集体订正:有不同意见的学生用色笔勾划指正,形成25个质数。

  小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。

  5.师:这些数我们都会判断了,下面我们来判断两个较大的数好不好?

  (依次出现20xx,…)

  生:除了1和它本身两个因数外,肯定还有3这个因数,所以这个数是合数。

  (依次出现3214675,…)

  生:依据能被2、3、5整除的数的特征进行判断。

  师:不管它还有几个因数,只要再举出一个,就足以证明它是一个合数了。

  6.判断下列数哪些是质数,哪些是合数:17,1725,219,364,39。

  师:如果按照因数的个数分类,0除外的自然数可以分为几类呢?

  (学生分类,出示如下的集合图。)

  六实践应用,解决问题

  举例说一说我们生活中的质数和合数。

  做一做

  1.36块体积为1立方厘米的小正方体积木,可以拼成几个不同的长方体?

  2.有一个五位数,万位上的数既不是质数也不是合数;千位上的数比最小的合数多1;百位上的数是10以内最大的素数;十位上的数既是偶数,又是质数;个位上的数是最小的两个连续质数的积。(这个数字是15726)

  3.妈妈给萌萌买了相同几个的几盒糖,付了40元,售货员找给她4元钱,你知道她买了几盒吗?

  七课后小结

  师:通过以上这些练习可以看出,同学们对质数和合数掌握的真是不错!老师把今天所学到的知识一一展示在了黑板上,谁来说一说通过这节课的学习你学到了什么新的知识?

  生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  1不是质数,也不是合数。

  自然数可以分为质数合数还有1。

  学会了判断一个数是质数还是合数的方法。

数学五年级下册第二单元教案6

  教学目标:

  (一)知识目标

  1、理解小数除法的意义。

  2、掌握小数除以整数(恰好除尽)的计算方法。

  (二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。

  (三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。

  教学重点:

  小数除法的意义,小数除以整数(恰好除尽)的计算方法。

  教学难点:

  商的小数点与被除数的小数点对齐。

  教学方法:

  探究、交流、引导。

  教学过程:

  一、导入新课,创设情境

  1、淘气打算去买牛奶,你从图上得到了什么数学信息?

  2、根据图上的数学信息,你能提出哪些数学问题?

  3、教师根据学生提出的问题,引导学生列出算式:11、5÷5 12、6÷6

  引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)

  师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。

  二、探索新知,解决问题

  1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。

  2、学生交流讨论,教师巡视指导。

  3、教师引导学生比较汇总的.各种方法,认为哪个方法比较简便实用?

  引导出“商的小数点与被除数的小数点对齐”。

  4、理解算理。

  5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。

  6、学生尝试计算,教师巡视指导。

  三、巩固练习,拓展延伸

  1、完成教材第3页练一练第1题。

  集体订正。

  2、我是小小神算手。

  20、4÷4 96、6÷42 55、8÷31

  引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。

  3、完成教材第3页练一练第4题。

  教师巡视指导。

  四、全课总结

  今天你有什么收获呢?

  板书设计:

  甲商店牛奶每袋多少钱?乙甲商店牛奶每袋多少钱?

  11、5÷5=2、3(元)12、6÷6=2、1(元)

数学五年级下册第二单元教案7

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。

  (二)核心能力

  在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。

  (三)学习目标

  1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。

  2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,

  (四)学习重点

  质数、合数的意义

  (五)学习难点

  正确掌握判断质数和合数的方法。

  (六)配套资源

  实施资源:《质数和合数》名师教学课件、百数表

  二、教学设计

  (一)课前设计(课前复习)

  (1)找出1~20各数的因数。

  (2)观察找出的1~20各数的因数,看看它们的个数有什么规律?

  (二)课堂设计

  1、谈话引入

  师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?

  师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?

  师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。

  2、问题探究

  (1)认识质数和合数

  ①引导观察,分类思考

  师:课前大家都找出了1~20各数的全部因数,谁来展示一下。

  生展示引导学生评价是否正确。

  师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?

  师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?

  全班交流,归纳小结。

  可以分成三类:

  有一个因数:1

  有两个因数:2、3、5、7、11、13、17、19

  有两个以上因数:4、6、8、9、10、12、15、16、18、20

  ②认识质数

  师:先观察只有两个因数的特征,他们的因数有什么特点呢?

  (出示:只有1和它本身两个因数)

  师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。

  师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)

  师:最小的质数是几?最大的呢?

  ③认识合数

  师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?

  引导小结:除了1和它本身以外,还有别的因数。

  师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  师:谁再举出几个合数的例子?举得完吗?说明了什么?(合数也有无数个)

  想一想:最小的合数是几?最大的呢?

  ④1既不是质数也不是合数

  师:现在还剩一个1,它是质数还是合数?

  交流明确:1既不是质数,也不是合数。

  ⑤小结

  师:按照因数个数的多少,自然数又可以分为哪几类呢?

  明确:按照因数的个数,把自然数分为质数、合数和1三类。

  【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  (2)100以内的质数

  师:如果请你们找出100以内的质数都有哪些,可以怎样来找?

  生讨论汇报。

  预设1:可以把每个数都验证一下,看哪些是质数。

  预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……

  师:你们认为哪种方法比较简便一些?(预设2的方法)

  引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。

  四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?

  全班交流汇报,教师课件演示。

  【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的`过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。

  (3)沟通联系,形成能力

  师:通过今天的学习,自然数都可以怎样分类?

  学生交流后,明确:

  自然数按因数的个数分为:质数、因数和1;

  自然数按是否是2的倍数分为:奇数和偶数。

  师:请大家结合所学的这些知识介绍自己的学号。

  随机抽取学生介绍,并适时拓展。

  3、巩固练习

  (1)将下面各数分别填入指定的圈里。

  27 37 41 58 61 73 83 95

  11 14 33 47 57 62 87 99

  (2)下面的说法正确吗?说说你的理由。

  ①所有的质数都是奇数。

  ②所有的偶数都是合数。

  ③所有的奇数都是质数。

  ④所有的合数都是偶数。

  辨析:

  ①所有的质数都是奇数

  学生举反例反驳。

  引导:你是怎样很快的找到这个数的,能说说方法吗?

  交流,明确:先写出所有的质数,再找其中不是奇数的。

  板书找的过程,并标注特殊数。

  引申:这句话怎样改就对了?

  交流,明确:除2外,所有的质数都是奇数。

  辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。

  学生分组辨析,每两大组辨析其中的一句话。

  小组合作,用刚才列举的方法找到特殊数。

  小组代表上台板演辨析的过程。

  对比,明确:

  除2外,所有的质数都是奇数,所有的偶数都是合数;

  因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。

  (3)括号内填入正确的质数。

  15=()+()18=()+()

  22=()+()49=()×()

  4、全课总结

  师:通过今天的学习你有什么收获?

  小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。

  (三)课时作业

  (1)填空。

  ①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。

  ②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。

  答案:①2和3;8和9 ②412

  解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】

  (2)老师家的电话号码是多少?

  ①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。

  ②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。

  ③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。

  答案:62419918。

  解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】

数学五年级下册第二单元教案8

  教学目标:

  1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

  2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

  3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

  教学重点:

  除数是整数,商是小数的小数除法的计算方法。

  教学难点:

  除得的结果有余数,补“0”继续除。

  教学过程:

  一、复习导入

  课件出示情境主题图

  开学了,班级购置了打扫卫生用具,买6把笤帚共花了18、6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

  引导学生列出算式并独立计算:18、6÷6 24÷4

  计算后说一说整数除法与小数除法的异同。

  二、对比中探索,交流中生成

  师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

  教师把情境题中的18、6改成18、9,把24改成26、

  1、初步尝试,发现问题。

  请你尝试计算这两题,你发现了什么?

  2、独立思考,尝试解决。

  师:有余数还能不能继续除下去?该怎么继续除?试算18、9÷6

  3、讨论交流,异中求同。

  (1)在小组内汇报自己的计算方法。

  (2)展示汇报。(可能出现第4页中几种不同的方法)

  (3)对比这几种方法:有什么相同的地方?

  引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的'情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3、15元。

  4、应用方法,归纳总结。

  竖式计算26÷4

  (1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

  (2)尝试总结除数是整数的小数除法的计算方法。

  三、巩固练习。

  1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

  2、错题诊所。

  209÷5=418 10÷25 =4 1、26÷18=0、7

  3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

  32÷8 12÷25 2、45÷3

  4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

  四、课堂总结

  本节课你有哪些收获?

数学五年级下册第二单元教案9

  教学目标:

  1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。

  2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。

  3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。

  教学重点:

  理解分数的意义

  教学难点:

  理解把许多物体组成的一个整体看作单位1。

  教学方法:

  自主探究、 合作交流教具多媒体课件

  教学过程:

  一、回顾旧知,导入新课。

  谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。

  谈话:对于分数还想了解的知识,进而导入新课。

  二、合作探究,构建新知

  (一)初步感知。

  出示情境图1船模试航。

  教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学

  信息?提出什么数学问题?

  教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?

  学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的`方法。学生分组活动时,教师参与到学生的小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5

  在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?

  (二)深入探究

  出示情境图2航模放飞

  谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?

  学生提出问题,教师适时梳理。

  如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  解决第一个问题:学生分组学习,教师要参与学生的小组活动中。

  全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?

  通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2

  课件演示将4架飞机平均分的过程,并板书结论。

  解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的1/3呢?。从而引导学生得出结论。

  (三)观察比较

  谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?

  引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?

  学生进行观察比较,同桌讨论,全班交流得到结论。

  通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。

  (四)拓展应用

  谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?

  学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。

  交流:你利用什么材料,得到一个什么分数,你是怎样得到的?

  总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。

  (五)总结概括

  谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。

  举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的不同。

  结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (六)看书质疑。

  学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。

  三、巧设练习,深化理解

  1、自主练习1、2

  2、涂色部分能用分数表示吗?(课件出示)

  3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?

  独立完成,进行交流。

  教学反思:

  创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。

数学五年级下册第二单元教案10

  【教学内容】 人教版五年级数学下册第二单元质数和合数例1。

  【教学目标设计

  1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

  2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固 。 提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。

  3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

  【教学重难点】

  1. 掌握质数、合数的概念。

  2. 正确地判断一个数是质数还是合数?

  【教具学具准备】:课件

  教学过程:

  一. 导入新课:

  1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)

  2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?

  3.激发兴趣。

  二.探究新知。

  1.说出1~20各数的因数。(课件出示,开火车的形式)

  2.观察思考 这些数的因数的个数一样多吗?(生:不一样)

  3.师:你能把这些数按因数的个数进行分类吗? ( 学生讨论,分类 )

  4.学生报结果(学生完成表格)

  5. 观察比较,发现特点,归纳概念。

  (1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数的个数有什么特点?

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  (2)师:观察4,6,8,9,10,12,14,15,16,18,20这几个数的因数的个数有什么特点?

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  (3)师:1既不是质数,也不是合数。

  6.最小的质数是几?有没有最大的质数?最小的合数是几?有没有最大的.合数?

  7.展示老师和学生制作的思维导图。

  8.判断自己的学号是质数还是合数?

  三.自学例1:

  1.指名汇报预习的结果。

  2.质疑。

  3.找质数的方法是:筛选法。

  4.修改自己圈的质数。

  5.出示质数歌。

  四.智慧大闯关:

  1.判断下面的数字是质数还是合数?

  (1)全年12个月,大月有31天,小月是30天,平年2月是28天, 闰年2月是29天。

  (2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。

  2. 下面的说法正确吗?说一说你的理由。

  (1)所有的奇数都是质数。 ( )

  (2)所有的偶数都是合数。 ( )

  (3)在1,2,3,4,5,…中,除了质数以外都是合数。( )

  (4)两个质数的和是偶数。 ( )

  3.猜数。

  4.猜一猜老师的电话号码是多少?

  (1)是奇数,但不是质数也不是合数。

  (2)比最小的质数大1。

  (3)比最小的合数大2。

  (4)10以内最大的奇数。

  (5)是奇数,但不是质数也不是合数。

  (6)10以内既是奇数,又是合数。

  (7)和第6个数相同。

  (8)10以内最大的质数。

  (9)10以内最大的偶数。

  (10)和第一个数相同。

  (11)是最小的偶数。

  5.数学游戏。

  五.数学文化:

  结合数学文化进行思想教育。

数学五年级下册第二单元教案11

  教学目标

  1.知识与技能

  (1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

  (2)能正确判断一个数是质数还是合数。

  (3)能判断两个自然上的和是奇数还是偶数。

  2.过程与方法

  引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

  3.情感态度与价值观

  培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重点

  理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  教学难点

  能运用一定的方法,从不同的角度判断、感悟质数合数。

  教学方法

  启发式教学、自主探索、合作交流、讨论法、讲解法。

  课前准备

  多媒体课件

  课时安排

  1课时

  教学过程

  (一)激趣导入。

  一、创设情境,引入新课(课件第2张)

  1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

  2.抢答:请同学们以最快的速度说出下面的数有几个因数。

  师出示数,学生抢答因数的个数。

  3.思考:

  (1)一个数的最小因数是几?最大因数是几?(课件第3张)

  (2)一个数的因数是有限的还是无限的?

  (3)怎样找一个数的因数?

  生1:一个数是最小因数是1,最大因数是它本身。

  生2:一个数因数的个数是有限的。

  生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

  设计意图

  用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

  4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

  (板书课题)

  (二)探究新知

  1.找出1-20各数的因数,看看它们的因数的个数有什么规律。

  (1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

  1的因数有:1 11的因数有:1,11

  2的因数有:1,2 12的因数有:1,2,3,4,6,12

  3的因数有:1,3 13的因数有:1,13

  4的因数有:1,2,4 14的因数有:1,2,7,14

  5的因数有:1,5 15的因数有:1,3,5,15

  6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

  7的因数有:1,7 17的因数有:1,17

  8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

  9的因数有:1,3,9 19的因数有:1,19

  10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

  (2)师:观察它们因数的个数,你发现了什么?

  小组讨论:根据因数的个数,你觉得可以怎样分类?

  (3)(课件第6张)

  生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

  生2:有的数的因数不止两个……我们来分分类吧!

  2.学习质数与合数(出示课件第7张)

  师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

  1既不是质数,也不是合数。

  3.做质数表。(课件第8张)

  (1)找出100以内的质数,做一个质数表。

  (2)学生讨论:怎样找100以内的质数?说说你的方法。

  (课件第10张)

  生1:可以把每个数都验证一下,看哪些数是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

  划到几的倍数就可以了?

  生3:划到7的倍数就可以了.

  (3)(课件第11张演示)剩下的数都是质数。

  (4)师出示100以内的质数表(课件第12张)

  4.牛刀小试。(课件第13张)

  (1)将下面的各数分别填入指定的圈内。

  2 27 37 11 58 61 73 83 95

  (2)两个质数,和是10,积是21,这两个质数是多少?

  生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

  两个质数,和是7,积是10,这两个质数是多少?

  10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

  5.探索两数之和的奇偶性。(课件第15张)

  师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

  (1)师:从题目中你知道了什么?

  生1:题目让我们对奇数、偶数的和做一些探索。

  生2:我把问题表示成这样……

  (2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?

  (3)汇报交流:

  生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

  奇数:5,7,9,11,…

  偶数:8,12,20,24,…

  5+7=12

  7+9=16

  ……

  奇数+奇数=偶数

  5+8=13

  7+12=19

  ……

  奇数+偶数=奇数

  8+12=20

  12+20=32

  ……

  偶数+偶数=偶数

  (课件第18张)生2:奇数除以2余1

  偶数除以2余0

  奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

  奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

  偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

  (4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

  同桌找一些大数,验证一下所得的结论是否正确。

  (5)(课件第20张)汇报交流:

  534+319=853

  所以:偶数+奇数=奇数

  681+249=930

  所以:奇数+奇数=偶数

  564+232=796

  所以:偶数+偶数=偶数

  设计意图

  用归纳的方法得出结论,培养学生的能力。

  6.火眼金睛辨对错。(课件第21张)

  (1)所有的奇数都是质数。(×)

  (2)所有的偶数都是合数。(×)

  (3)在1,2,3,4,5中,除了质数以外都是合数。(×)

  (4)两个质数的和是偶数。(×)

  (5)两个奇数的和是偶数。(√)

  7.小结:刚才的学习你学会了什么?(课件第22张)

  (1)质数与合数的概念。

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的`因数,这样的数叫做合数。

  (2)1既不是质数,也不是合数。

  (3)自然数可以分为质数、合数和1。

  (4)偶数+奇数=奇数

  奇数+奇数=偶数

  偶数+偶数=偶数

  (三)课堂练习

  谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

  1.写出下面各数的因数。(课件第23张)

  (1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

  (2)既是质数又是奇数的最小一位数是(3)。

  (3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

  (4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

  2.不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

  1+2+3+4+…+40

  生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

  (四)拓展提高

  算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

  最小的合数是4,4?=16。

  哪3个质数的和是16呢?

  2+3+11=16

  2×3×11=66

  答:这3个质数的积是66。

  (五)课堂总结

  师:通过学习,你有什么收获?

  生交流:

  1.一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  2.一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  3.1既不是质数也不是合数。

  4.奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

  (六)板书设计

  质数和合数

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  1既不是质数也不是合数。

  教学反思

  在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

  课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

数学五年级下册第二单元教案12

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是( )。

  3、( )和( )在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的`摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读“你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

数学五年级下册第二单元教案13

  一、学情分析:

  《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。

  二、教学目标:

  1、理解质数和合数的概念。

  2、能熟练判断质数与合数,能够找出100以内的质数。

  3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  三、教学重难点:

  重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  难点:能运用一定的方法,从不同的角度判断、感悟质数合数。

  四、教学过程:

  一、导入新课。找出1~20各数的因数。

  你发现了什么?

  (学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……。)

  今天我们学习的内容就与一个数因数的个数有关。

  [设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]

  二、新授

  探究一:认识质数和合数

  师:请同学们按照因数的个数,将这些数分分类。

  (学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)

  师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。

  师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?

  (学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)

  师:1是质数吗?

  (学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……。)

  师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?

  (学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……。)

  师:1是合数吗?

  (学生可能回答:1不是合数,它只有1个因数1。)

  小结:1不是质数,也不是合数。

  师:你还能找出其他的质数和合数吗?

  (学生举例并说明理由)

  [设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]

  探究二:找出100以内的质数,做一个质数表。(课本P14例1。)

  (媒体出示图表)

  师:你有什么好方法?

  (学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的'数先去掉;……。)

  师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?

  (学生可能回答:50的倍数,51的2倍是102,超过100了。)

  (学生制作100以内的质数表。)

  [设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]

  三、练习

  (课本P16∕练习四第一、二题。)

  四、小结:

  1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

  2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。

  3、1不是质数,也不是合数。

  五、作业

  P16第三、四、五题。

  附板书设计:

  质数与合数

  因数个数

  1 1个

  自然数质数(素数):只有1和它本身两个因数。 2个

  合数:除了1和它本身还有别的因数。 2个以上

  1既不是质数,也不是合数。

数学五年级下册第二单元教案14

  教学目标:

  1、体会小数混合运算的运算顺序和整数是一样的,会计算小数四则混合(以两步为主,不超过三步)

  2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

  3、培养学生善于探讨数学问题的良好习惯,能够综合问题的能力。

  教学重点:

  掌握小数四则混合运算的算法,会进行小数四则混合运算。

  教学难点:

  通过解决具体问题理解运算间的联系。

  教学过程:

  一、情境导入

  师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材情境图)师:从这个调查汇报情况中你获得了哪些数学信息?

  学生:五年级1班汇报信息:一个人4周可产生30、8千克生活垃圾。五年级2班汇报信息:一个小区周一到周五共产生生活垃圾3、5吨,周末每天产生生活垃圾1、3吨。

  师:看到这些数学信息,你能提出哪些数学问题?引导学生根据不同的信息提出不同的数学问题。

  二、探究新知

  1、研究连除、乘除混合运算。

  根据学生提出的不同问题,教师有选择性地出示问题:一个人4周可产生30、8千克生活垃圾,那么一个人平均每天产生多少千克生活垃圾?

  学生阅读题目后,教师提问:“要想求出一个人平均每天产生多少千克生活垃圾,需要什么书籍条件?题目中是否直接给出?用什么方法计算?”学生独立思考计算后,在小组内交流自己的'想法。

  小组汇报,学生可能会呈现的方法

  一种方法:先计算4×7=28,算出四周一共多少天,再用30、8÷28算出平均一天产生多少垃圾。

  另一种方法:先算每周产生多少千克垃圾,用30、8÷4=7、7,再用7、7÷7算出平均每天产生多少千克垃圾。

  2、研究除、加混合运算。

  出示问题2:一个小区周一到周五共产生生活垃圾3、5吨,周末每天产生生活垃圾1、3吨。与平时相比这个小区周末每天要多处理多少吨生活垃圾?

  学生独立完成,教师要引导列分步算式的同学试着列出综合算式,根据其中的数量关系,运算出结果。

  3、总结规律

  引导学生面容两题中的三个综合算式,再一次得出结论:小数四则混合运算的顺序与整数四则混合运算顺序相同,整数运算定律在小数运算中同样适用。

  三、巩固练习

  完成教材第17页算一算

数学五年级下册第二单元教案15

  教学目标:

  1、通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题、

  2、让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

  3、培养学生利用恰当的方法解决实际问题的能力。

  教学重点:

  通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系、

  教学难点:

  通过复习,使学生能够准确的找出题目中的等量关系、

  教学过程:

  一、复习准备、(P107)

  1、找出下列应用题的等量关系、

  ①男生人数是女生人数的2倍、

  ②梨树比苹果树的3倍少15棵、

  ③做8件大人衣服和10件儿童衣服共用布31、2米、

  ④把两根同样的铁丝分别围成长方形和正方形、

  (学生回答后教师点评小结)

  我们今天就复习运用题目中的等量关系解题、(板书:列方程解应用题)

  二、新授内容

  1、教学例3、

  (1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的`铁路长多少千米?

  ①、读题,学生试做、

  ②、学生汇报(可能情况)

  (90+75)×4

  提问:90+75求得是什么问题?再乘4求的是什么?

  90×4+75×4

  提问:90×4与75×4分别表示的是什么问题?

  (由学生计算出甲乙两站的铁路长多少千米。)

  (2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

  (先用算术方法解,再用方程解)

  ①、660÷(90+75)=?

  ②方程

  解:设经过x小时相遇,

  (90+75)×x =660或者,90×x +75×x =660

  让学生说出等量关系和解题的思路

  教师小结(略)

  (3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

  (先用算术方法解,再用方程解)

  ①、(660—90×4)÷4=?

  ②、方程

  解:设货车每小时行x千米

  90×4+ 4x = 660或者(90 + x)×4 = 660

  让学生说出等量关系和解题的思路

  教师小结(略)

  让学生比较上面三道应用题,它们有什么联系和区别?

  比较用方程解和用算术方法解,有什么不同?

  教师提问:这两道题有什么联系?有什么区别?

  三、巩固反馈、(P109———1题)

  1、根据题意把方程补充完整、

  (1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看、

  _____________=53

  _____________=116

  (2)妈妈买来3米花布,每米9、6元,又买来x千克毛线,每千克73、80元、一共用去139、5元、

  _____________=139、5

  _____________=9、6×3

  (3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米、

  _____________=280×3

  2、(P110————4题)解应用题、

  东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1、2吨、剩下的煤如果每天烧1、1吨,还可以烧多少天?

  小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法、

  3、思考题、

  甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港、客船开出12小时后与货船相遇、如果货船每小时行15千米、客船每小时行多少千米?

  四、课堂总结、

  通过今天的复习,你有什么收获?

  五、课后作业、

  (P110———5题)不抄题,只写题号。

  板书设计:

  列方程解应用题

  等量关系具体问题具体分析

  例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千

【数学五年级下册第二单元教案】相关文章:

数学五年级下册第二单元教案03-17

人教版五年级下册数学第二单元教案01-14

数学五年级下册第二单元教案(15篇)03-17

人教版五年级下册数学第二单元教案模板10-12

五年级下册第二单元教案及复习12-17

人教版五年级下册数学第二单元教案(通用16篇)03-14

五年级语文下册第二单元教案212-09

五年级语文下册第二单元教案112-09

人教版五年级下册数学第二单元试卷09-21