五年级数学下册教案

时间:2023-03-09 18:09:19 数学教案 我要投稿

2022北师大版五年级数学下册教案

  作为一位不辞辛劳的人民教师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?下面是小编精心整理的2022北师大版五年级数学下册教案,仅供参考,希望能够帮助到大家。

2022北师大版五年级数学下册教案

2022北师大版五年级数学下册教案1

  设计说明

  苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

  另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

  课前准备

  教师准备 PPT课件、长方形包装纸

  学生准备 长方形纸

  教学过程

  ⊙创设情境,提出问题

  1.问题导入。

  师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的'问题。

  请你们列出算式并计算。

  (1)每人吃张饼,4个人共吃多少张饼?

  (2)把2张饼平均分给4个人,每人分得多少张饼?

  (3)有2张饼,每人分得张饼,可以分给几个人?

  (引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

  2.揭示分数除法的意义。

  讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

  ⊙合作交流,探究新知

  1.引导参与,探究新知。

  (1)出示教材55页例题。

  师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

  (2)动手操作,分一分,涂一涂。

  师:请大家拿出一张长方形纸,涂色表示出这张纸的。

  (学生动手操作,教师巡视指导)

  师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

  (学生活动,教师指导)

  (3)观察发现。

  师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

  预设

  (教师利用课件配合学生汇报)

  生1:把平均分成2份,每份是2个小格,占这张纸的。

  生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

  设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

  2.初探算法。

  师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

  预设

  生:分母不变,被除数的分子除以整数得到的商作商的分子。

  提出质疑,验证猜想,理解新知。

  (1)尝试验证,发现问题。

  师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

  (学生汇报验证的结果)

  师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

2022北师大版五年级数学下册教案2

  学习内容:

  长方体的认识(教材第18~19页的内容及第21~22页练习五的1、2、3、6、7题)。

  学习目标:

  1.初步认识立体图形、认识长方体的特征。

  2.通过观察、想象、动手操作等活动进一步发展空间观念。

  3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。

  教学重点:

  掌握长方体的特征。

  教学难点:

  通过观察、想象、动手操作等活动进一步发展空间观念

  教具运用:

  一些长方体物品,课件。

  教学过程:

  一、复习导入

  1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)

  2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?

  3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。

  二、新课讲授

  1.认识长方体的面、棱、顶点。

  (1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的.面)

  板书:面

  (2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。

  板书:棱

  (3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。

  板书:顶点

  (4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。

  2.研究长方体的特征。

  (1)面的认识。

  ①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前后,上下,左右。

  ②引导学生观察长方体的6个面各是什么形状的?

  板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

  ③引导学生进一步验证长方体相对的面的特征。

  板书:相对的面完全相同。

2022北师大版五年级数学下册教案3

  教学内容:

  本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。

  教材分析:

  本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。

  学情分析:

  本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。

  教学目标:

  1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。

  2、握不规则物体的测量方法,并能测量不规则物体的体积。

  3、践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。

  教学重点:

  让学生掌握不规则物体体积的测量方法。

  教学难点:

  灵活运用“排水法”和“溢出法”解决实际问题。

  教具准备:

  魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶

  教学过程:

  一、导入

  1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。

  从数学的角度来讲,魔方是一个什么样的物体?(正方体)

  怎样求出这个正方体的体积呢?(板书:V正=a3)

  它的棱长是10cm,体积是多少呢?(1000cm3)

  2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)

  3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)

  4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?

  像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)

  5、现在这个魔方的体积是多少呢?(还是1000cm3)你是怎么想的?(板书:转化)

  【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】

  6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?

  那它的体积是多少,又该怎样求呢?

  这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。

  二、新授

  (一)测量芒果的体积

  1、你想怎样测这个芒果的体积呢?(学生汇报)

  2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。

  你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)

  3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)

  量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)

  仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)

  现在,你知道芒果的体积是多少吗?

  100是芒果的体积,它也是什么的体积?(上升的水的体积)

  4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)

  5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。

  【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】

  (二)测量石头的体积

  1、现在老师也想进行一次测量,我想测的是这块石头的体积。

  我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)

  2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)

  3、在测量的时候应该注意什么?(强调:要从里面测量)

  出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?

  这样放行不行(竖着)?为什么?(石头没有完全浸入水中)

  石头已经完全浸入水中,此时水面的高度是10cm

  4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)

  5、刚才,在我们的共同努力下,测得了这块石头的体积。

  在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)

  【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】

  6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)

  【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】

  7、其实,早在20xx多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。

  (三)测量苹果醋瓶的体积

  1、现在你们想不想亲自测量一下不规则物体的体积?

  机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的'体积是多少?(净含量:260mL)

  2、现在就动手来验证一下吧。将记录填写在实验报告单中。

  【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】

  3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?

  (四)总结

  通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)

  【设计意图:使学生明确“转化”思想的实质。】

  三、质疑

  看书页,对于今天我们学习的知识,你还有什么不清楚的地方?

  四、课堂练习

  (一)填空

  1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。

  2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。

  3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。

  【练习目的:强化“转化”思想的实质。】

  (二)解决问题

  第一组

  1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?

  2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?

  【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】

  第二组

  1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?★★

  2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。★★★

  3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少? ★★★★★

  【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】

  五、全课小结

  1、通过这节课的学习,你有什么收获?(学生汇报)

  2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。

  3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)

  一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。

2022北师大版五年级数学下册教案4

  教学目标:

  1.知识目标:在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

  2.能力目标:经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

  3.情感目标:感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

  教学过程:

  一、复习导入

  1、复习长(正)方体的体积,体积和容积单位的换算。

  2、听故事,曹冲称象(大象的质量转换为石块的质量)阿基米德的故事(皇冠的体积转换成水的体积)。故事对于我们的这节课学习是不是会有所帮助,有所启发呢?

  3、观察(石块土豆)的形状,与长方体或正方体比较引出不规则物体(并板书)。

  故事中的皇冠也是不规则物体吗?

  石块和土豆再比较,哪个物体更不规则,指出今天我们就来测量石块的体积。(板书)

  二、实验操作,测量石块体积。

  1.拿出桌子下面的.测量工具,根据给出的测量工具,各小组想好测量方案,该做哪些工作(分工)。分工协作:

  方案一,取水,测量底面的长和宽,以及水面的高度,放入石块后再测量水面到达的高度,用底面积乘高度的差就是石块的体积。(注意点:水的量应适中,不要太少也不能太多,刚好能让石块浸没而升高的水又不至于溢出就可以了。)

  方案二,取水,在空器中倒满水,然后把石块慢慢放入水中,再将溢出的水倒进量杯中量出水的体积

  2.小组汇报各自做法,老师边听学生汇报边板书。(适量的水:升高部分水的体积相当于石块的体积)(加满的水:溢出的水的体积相当于石块的体积。)

  真不错,大家测出了石块的体积,请把水倒回水桶,下面小组交换一下测量工具,重新测量石块的体积,来验证一下测量的结果是否大致相同。

  3.除了上面的两种方案,还有其他的测量方案吗?说说看,我们班是不是会出现曹冲第二呢?

  预设一:小物体---直接有量杯测出体积。

  预设二:把石块先放入容器,往容器里加入水,直到水高过石块,测量水的高度,把石块捞出,再次测量水的高度,把容器的底面积乘两次的高度差就是石块的体积。

  预设三:当装的水过高时,我们可以把升高的这部分水的体积加水溢出的水的体积也能求出石块的体积。

  预设四:有称重的办法求石块的体积,把我们量出的石块称一称,看重多少,再根据这对数据求出任意大小石块的体积。

  预设五:用橡皮泥代替水做也可,把石块放入长方体空器,往容器内塞入橡皮泥,直到塞满为止,取出石块,再塞入橡皮泥(压平,测量橡皮泥的高度,把底面积乘容器高度与橡皮泥高度差就是石块的体积。……

  三、巩固提高

  今天大家的表现真不错,有些方案老师也没能想到。学有所用,学以致用,我们来看看小黑板的题目怎么做。

  1.一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面升高了0.2分米,这个土豆的体积是多少?(生独立完成。)

  2.测量一颗跳珠的体积。

  数25粒跳珠,放入一个盛有一定量水的量杯中,根据水面升高的情况测量出水的体积,再算出一颗跳珠的体积。(学生实验并计算出体积)

  四、总结提高

  通过今天的学习,你有什么收获?(我学会了求石块的体积,我学会了怎样求不规则物体的体积,我学会了把一个物体转换成另一个物体来解决问题的方法。)

2022北师大版五年级数学下册教案5

  设计说明

  复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。

  1.创造性地使用教材。

  在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。

  2.重视对学生解决问题能力的培养。

  教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的知识整理成知识网络,提高学生解决问题的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙导入新课

  1.同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?

  2.学生独立思考后,在小组内交流。

  (异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)

  3.小组汇报,全班交流,互相评价,呈现知识结构图。

  分数加减法

  设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。

  ⊙整理复习

  1.复习异分母分数加减法的计算方法。

  (1)复习异分母分数加减法应注意什么?结合具体实例说一说。

  (2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。

  + -

  结合上面的.算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。

  (3)完成教材94页1题前两个小题的计算。

  + -

  解答: + -

  =+=-

  ==

  =

  2.复习分数加减混合运算的运算顺序。

  (1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。

  +- -+

  1-- 1-

  ①复习分数加减混合运算的计算方法。

  在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。

  ②复习分数加减混合运算的运算顺序。

  分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。

  ③学生在小组内讨论、计算后交流结果。

  (2)完成教材94页3题最后一竖排两个小题。

  +- -

  =+-=-

  =- =-

  == =

  ①引导学生观察第2个小题,课件出示学生的不同解法。

  --

  =-- =--

  =- =-

  = =-

  =-

  =

  ②从上面的解法中,你发现了什么?

  学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。

  3.复习分数与小数的互化。

  先想一想分数、小数是怎样互化的,再计算下面各题。

  0.75=( ) =( )

  2.12=( ) 4=( )

2022北师大版五年级数学下册教案6

  教学目标

  1、掌握整除、约数、倍数的概念.

  2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

  教学重点

  1、建立整除、约数、倍数的概念.

  2、理解约数、倍数相互依存的关系.

  3、应用概念正确作出判断.

  教学难点

  理解约数、倍数相互依存的关系.

  教学步骤

  一、铺垫孕伏(课件演示:数的整除下载)

  1、口算

  6÷515÷323÷7

  1.2÷0.324÷231÷3

  2、观察算式和结果并将算式分类.

  除尽

  除不尽

  6÷5=1.215÷3=15

  1.2÷0.3=424÷2=12

  23÷7=3......2

  31÷3=10......1

  3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

  4、寻找具有整除关系的算式.

  板书:15÷3=515能被3整除

  5、分类除尽

  除不尽

  不能整除

  整除

  6÷5=1.2

  1.2÷0.3=4

  15÷3=15

  24÷2=12

  23÷7=3......2

  31÷3=10......1

  二、探究新知

  (一)进一步理解”整除“的意义.

  1、整除所需的条件.

  (1)分析:24能被2整除,15能被3整除;

  23不能被7整除,31不能被3整除;(商有余数)

  6不能被5整除;(商是小数)

  1.2不能被0.3整除;(被除数和除数都是小数)

  (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

  a、被除数和除数(0除外)都是整数;

  b、商是整数;

  c、商后没有余数.

  板书:整数整数整数(没有余数)

  15÷3=5

  2、用字母表示相除的两个数,理解整除的意义.

  (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

  (板书:a÷b)

  学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

  (板书:a能被b整除)

  (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

  学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

  3、反馈练习.

  (1)下面的数,哪一组的第一个数能被第二个数整除?

  29和336和121.2和0.4

  (2)判断下面的说法是否正确,并说明理由.

  a.36能被12整除.()

  b.19能被3整除.()

  c.3.2能被0.4整除.()

  d.0能被5整除.()

  e.29能整除29.()

  4、”整除“与”除尽“的联系和区别.

  讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

  (举例说明)

  (二)约数、倍数的意义

  1、类推约数、倍数的意义.

  (1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

  (2)学生口述:

  24能被2整除,我们就说,24是2的倍数,2是24的约数.

  10能被5整除,我们就说,10是5的倍数,5是10的约数.

  a能被b整除,我们就说a是b的倍数,b是a的约数.

  (3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

  (4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

  2、进一步理解约数、倍数的意义.

  (1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

  (2)约数和倍数相互依存的关系.

  学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

  (3)反馈练习:

  A、下面各组数中,有约数和倍数关系的有哪些?

  16和2140和20xx和15

  33和64和2472和8

  B、判断下面说法是否正确.

  a、8是2的倍数,2是8的约数.()

  b、6是倍数,3是约数.()

  c、30是5的倍数.()

  d、4是历的约数.()

  e、5是约数.()

  3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

  4、教学例2:12的约数有哪几个?

  (1)引导学生合作学习,讨论分析.

  (2)汇报、板书:

  12的约数有:1、2、3、4、6、12

  (3)练习:15的约数有哪几个?

  (4)学生明确:

  一个数的约数是有限的其中最小的约数是1,的约数是它本身.

  5、教学例3:2的倍数有哪些?

  (1)引导学生合作学习,讨论、分析.

  (2)汇报、板书:

  2的倍数有:2、4、6、8、10......

  (3)练习:2的倍数有哪些?

  (4)学生明确:

  一个数的'倍数的个数是无限的,其中最小的倍数是它本身.

  三、全课小结

  这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

  (板书课题:约数和倍数的意义)

  四、随堂练习

  1、下面的说法对吗?说出理由.

  (1)因为36÷9=4,所以36是倍数,9是约数.

  (2)57是3的倍数.

  (3)1是1、2、3、4、5,...的约数.

  2、下面的数,哪些是60的约数,哪些是6的倍数?

  3412162460

  教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

  3、下面的说法对吗?为什么?

  (1)1.8能被0.2除尽.()1.8能被0.2整除.()

  1.8是0.2的倍数.()1.8是0.2的9倍.()

  (2)若a÷b=10,那么:

  a一定是b的倍数.()a能被b整除.()

  b可能是a的约数.()a能被b除尽.()

  五、布置作业

  1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

  101336

  2、在下面的圈里填上适当的数.

  六、板书设计

  约数和倍数的意义

  探究活动

2022北师大版五年级数学下册教案7

  教学目标:

  1.会解决有关百分数的简单实际问题,体会百分数与现实生活的密切联系。

  2.在解决实际问题过程中,理解百分数化成分数、小数的必要性,会解决有关百分数的简单实际问题,能正确将百分数化成分数、小数。 3.体会百分数与现实生活的密切联系。

  教学重点:

  能正确将百分数化成分数、小数。

  教学难点 :

  体会百分数与现实生活的密切联系

  教学过程:

  一、复习旧知

  (1) 五(1)班有50人,男生人数是全班人数的'3/5,男生有多少人?

  (2) 把小数化成百分数。 0.25 1.4 (3)把分数化成百分数 1/8 3/4

  二、创设情景,激发兴趣

  1、出示黄豆情景图,问:“从图中你了解到黄豆含有哪些成分?”(生答)

  2、师:要求黄豆中蛋白质的含量算式怎样列?你能列式求出黄豆中其他成分的含量吗?

  250× 36﹪ 250× 18.4﹪ 250×25﹪

  为什么用乘法计算?

  归纳出:求一个数的几分之几是多少用乘法计算,所以求一个数的百分之几是多少也用乘法。(板书)

  师主要围绕以下问题展开讨论:

  A.题中将百分数化成分数或小数的方法能否推广到其它的一个数乘百分数?

  B.是不是所有的百分数都可以化成分数和小数?

  C.如何将百分数化成分数或小数呢?(百分数化成小数有没有更简便的方法?)

  通过举例验证,交流讨论,学生归纳出百分数化成分数或小数的方法。

  师板书百分数化成分数或小数的方法,生齐读。

  把百分数化成小数的方法:把百分数的小数点向左移动两位,同时去掉百分号

  百分数化成分数:先把百分数化成分母是100的分数,能约分的约成最简分数

  三、巩固练习,集体校对:

  1.生任选250×18.4% ,250×25%两道中的一题来求出脂肪和碳水化合物的含量。集体订正并板书。

  2.完成数学书70页1.3.4题。

  四、知识拓展

  小丽家这个月的总收入是3000元,买食品支出的的钱数占总钱数的60﹪,买文化用品支出的钱数占总钱数的1﹪,买玩具支出的钱数占总钱数的10﹪。小丽家这个月买食品,买文化用品,买玩具各支出多少元? 生解答后.

  师:你认为小丽家的这个月支出合理吗?如果是你,打算怎样支出? 让学生感受到数学来源于生活,又服务于生活.

2022北师大版五年级数学下册教案8

  教学目标:

  1.结合具体活动情境,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。

  2.在实践与探究过程中,尝试用多种方法解决实际问题。

  教学重难点:

  探索不规则物体体积的方法,尝试用多种方法解决实际问题。

  教学活动:

  一、创设情况,引入新知

  1.出示石块

  问:如何测量石块的体积?什么是石块的体积?

  极书课题。

  2.以小组为单位,先讨论、制定测量方案。

  问:能直接用公式吗?不能怎么办?

  3.小组派代表介绍测量方案。

  学生观察石块

  想一想,如何测量石块的体积。

  学生分组讨论,制定测量方案

  学生的测量方案可能有:

  方案一:取一个正方体容器,里面放一定的水,量出水面的高度后把石块沉入水中,再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的水的体积,也就是石块的体积了,也可以分别计算放入石块前的水的体积与放入石块后的总体积之差。

  方案二:是将石块放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出溢出的水的体积,就是石块的体积。

  方案三:可以用细沙代替水,方法类似于方法一、方法二。

  设计意图:创设情景,激发学生学习新知的兴趣。引导学生小组合作,制定测量方案。

  引导学生探索与体会测量不规则物体的体积的方法。

  二、进行实验

  让学生按各自小组制定的'方案小组合作进行测算。

  小组代表领取所需测量工具,学生小组合作动手测量,并且列式计算

  设计意图:通过实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种。

  三、试一试

  1.在一个正方体容器里,测量一个苹果的体积。

  2.测量一粒黄豆的体积。

  学生小组合作进行测算

  3.小结。

  师:通过实验,这节课你有什么收获?

  请几名学生说说自己的收获

  设计意图:让学生再一次运用在操索活动中得到的测量方法去测量其它不规则物体的体积。

  四、数学万花筒

  课件出示阿基米德的洗浴故事

  学生听老师讲述阿基米德的洗浴故事

2022北师大版五年级数学下册教案9

  教学内容:

  二期教材四年级第一学期课本P22—23

  教材分析:

  本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。

  教学目标:

  (一)知识与技能

  1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。

  2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。

  (二)过程与方法

  经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。

  (三)情感与态度

  逐步体会数学与日常生活的密切联系,感知数学的价值。

  重点难点:

  1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。

  2、理解常用面积单位间进率的推算方法。

  教学过程:

  一、引入阶段

  1、感受平方千米

  同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位k㎡来表示,是多少呢?请看大屏幕:(出示)

  我们美丽的校园占地面积约0.03平方千米。

  我们家园——泗泾镇占地面积约24.2平方千米。

  我们的松江区总面积约604平方千米。

  你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)

  小结:平方千米常用来表示面积大的区域。

  (从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感)

  2、感知常用的小面积单位

  我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1k㎡能用手势来表示吗?(不能)为什么?(1k㎡太大)

  3、感知练习

  同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的'有快又准

  在下面()中填入适当的面积单位(课本23页)。

  一张邮票的面积约9()

  一张乒乓球台面约410()㎡

  一间教室的面积约63()

  一张软盘的面积约1()

  一个排球场占地约162()

  上海野生动物园占地约2()

  (在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。)

  二、探究阶段

  1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1㎡可以挤下17人,那么1k㎡能不能挤得下整个上海的人?(上海总人口为16737700人)

  要想解决这个问题,我们需要知道什么?同桌交流:需要知道1k㎡等于多少㎡,即k㎡与㎡之间的进率,就可以求出1k㎡可以挤多少人,最终把问题解决。

  2、合作探究:我们知道1k㎡就是边长为1km的正方形的面积,(出示边长为1km的正方形图形)。

  那么k㎡与㎡之间的进率是多少呢?你们能从1k㎡的定义来找出它们之间的进率吗?请小组合作完成。

  (1)组内尝试解决,师巡视指导。

  (2)全班交流解法:(板书)

  1km×1km=1k㎡

  1000m×1000m=1000000㎡

  1k㎡=1000000㎡

  (3)再次交流:通过在1k㎡定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。

  3、问题解决:知道了1k㎡=1000000㎡,那么1k㎡能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?

  4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)

  1k㎡=()㎡1㎡=()d㎡1d㎡=()c㎡

  (通过问题设疑,激发学生的求知欲,让学生主动去探究k㎡和㎡的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1k㎡=1000000㎡。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知_和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。)

  三、运用阶段

  1、分层练习:(说出思考过程)

  (1)25㎡=()dm23k㎡=()㎡

  (2)3400d㎡=()㎡9000000㎡=()k㎡580c㎡=()d㎡

  (3)70000000㎡—7k㎡=()k㎡

  (学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。)

  2、拓展练习(同桌讨论)

  判断下列各题是否正确,错的请改正。

  (1)一个铅笔盒表面的宽度约5c㎡

  (2)教室的面积约30d㎡

  (3)一个粉笔盒的表面约0.75c㎡

  (4)上海市的总面积约6341000000k㎡

  (在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。)

  3、生活应用:(小组合作)

  出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?

  解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。

  (通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。)

  四、总结

  这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?

2022北师大版五年级数学下册教案10

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的'物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

2022北师大版五年级数学下册教案11

  教学目标:

  1、通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

  2、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。

  3、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。

  教学重点:

  通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

  教学难点 :

  通过动手操作,知道长方体、正方体的`展开图,加深对长方体、正方体的认识。

  教学准备:

  1、准备长方体和正方体的纸盒各一个。

  2、把附页1中的图形剪下来。

  前置作业:

  1、把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)

  2、把一个正方体盒子沿着棱剪开,得到一个展开图是(可以画一画也可以贴一贴)

  3、做一做

  (1)下面哪些图形沿虚线折叠后刚好能围成正方体?

  (2)下面哪些图形沿虚线折叠后刚好能围成长方体?

  教学过程:

  课前3分钟内容

  一、动手操作,知道长方体、正方体的展开图。

  1、通过剪盒子,认识长方体、正方体的展开图。

  师:请同学们拿出你们带来的正方体纸盒,沿着棱剪开,看看你能得到什么样的展开图。

  学生在剪、拆盒子的过程中,教师要对剪的方法进行适当的指导。

  由于剪法不同,展开图的形状也是不同的。学生剪好后,教师展示不同形状的展开图。

  师:请同学们再将一个长方体盒子沿棱剪开,看看又能得到怎样的展开图。

  2、体会展开图与长方体、正方体的联系。

  教科书第16页做一做第1、2题

  引导学生理解题目要求,利用附页1中的图形进行操作,独立地想一想哪些图形符合题目的要求,再组织学生交流。

  二、练一练

  1、教科书第17页练一练第1题。

  先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。

  2、教科书第17页练一练第2题。

  先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。

  板书设计:

  展开与折叠

2022北师大版五年级数学下册教案12

  教学目标和要求

  1.理解百分数的意义,正确地读写百分数能运用百分数表示事物。

  2.会解决有关百分数的简单实问题

  教学重点解决有关百分数的简单实问题

  教学难点体会百分数与现实生活的密切联系

  教学准备组织学生收集生活中的分数、百分数

  教学时数1课时

  教学过程备注栏

  一、复习旧知

  让学生说说百分数的含义

  二、指导练习

  1.教科书第73页第3题

  要求学生自己独立完成,最后全班讲评

  2.教科书第75页第8题

  先让学生理解题意,明白“成活率”指的`是成活的棵数与所有植树总棵树的百分几。

  独立完成后,全班讲评

  3.教科书第75页第10题

  先让学生明白“优秀率”的含义,鼓励学生找出等量关系,列方程解答。

  4.教科书第75页第11题

  先看表,弄清题意,然后独立完成。

  学生汇报全班讲评

  5.教学“实践活动”

  先组织学生在课堂上交流,体会百分数、分数之间的联系。

  然后鼓励学生分别总结生活中使用百分数和分数的例子,结合具体事例谈谈自己的体会。

2022北师大版五年级数学下册教案13

  教学内容:

  相遇问题(教材第71、72页)

  教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  教学重点:

  理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

  教学难点:

  掌握列方程解具有两积之和(或差)的数量关系的.应用题的解法。

  教学过程:

  一、复习旧知

  1、说一说速度、时间和路程三者之间的关系。

  2、应用。(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

  (2)一辆汽车每小时行驶40千米,200千米要行几小时?

  3、列方程解应用题,关键是要找出题中的什么?,再根据找出的什么列出方程。

  二、探索新知

  1、揭示课题。

  师:数学与交通密切相联。今天,我们一起来探索相遇问题。

  板书课题:相遇问题。

  2、创设结伴出游的情境。课件出示教材第71页的情境图。

  从图中找出相关的数学信息。

  生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。

  生2:淘气家到笑笑家的路程是840米。

  生3:两人同时从家里出发,相向而行。

  第一个问题:让学生根据信息进行估计,两人在何处相遇?

  因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

  第二个问题:画线段图帮助学生理解第二、第三个问题。

  通过画线段图帮助学生找出等量关系。

  淘气走的路程+笑笑走的路程=840米

  第三个问题:根据等量关系列出方程。

  解:设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示50x米。则方程为

  70x+50x=840

  学生独立解答。

  3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。

  根据路程速度和=相遇时间列出算式

  840(70+50)

  三、应用新知,拓展练习

  1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。

2022北师大版五年级数学下册教案14

  教学目标和要求

  利用表面积等有关知识,通过解决包装问题,体验策略的多样化,发展优化思想。

  教学重点

  探索多个相同长方体叠放后使其表面积最小的最优策略。

  教学难点

  通过解决包装问题,体验策略的多样化,发展优化思想。

  教学准备

  计算机课件

  教学时数

  1 课时

  教学过程

  一、 创设情境 引出问题

  1. 结合生活中有关包装的问题(电脑显示各种包装)

  提问:

  包装时需要考虑哪些因素(如:节约 美观 便于携带等)

  2 .引导学生围绕节约展开讨论 引入教材中的问题

  教师板书(包装的'学问)

  二.探索方法

  1. 提问:两盒糖果有几种排列方式(三种)

  2. 组织学生对三种方案进行比较分析

  分组讨论 汇报结果

  方案 1 的表面积: 20 × 15 × 2+15 × 5 × 4+20 × 5 × 4=1300 (平方厘米)

  方案 2 的表面积: 20 × 15 × 4+15 × 5 × 4+20 × 5 × 2=1700 (平方厘米)

  方案 3 的表面积: 20 × 15 × 4+15 × 5 × 2+20 × 5 × 4=1750 (平方厘米)

  通过比较得出方案 1 最节约纸

  三、 练习

  a) 引导学生讨论 比较得出结果

  b) 组织学生反思为什么方案 1 最节约纸

  四、 教学“实践活动”

  1 .让学生明白所要解决的问题是什么?(最节约地包装磁带)

  必须先知道什么?(它的表面积)

  2 .分组讨论 罗列方法 完成课本中的表

  五、 小结

  你学到了包装的什么知识?

2022北师大版五年级数学下册教案15

  教学内容:

  九年义务教育六年制小学数学第十册第49页

  教学目的:

  1、进一步理解和掌握整除的意义。

  2、理解、掌握约数和倍数的意义,知道约数、倍数的相互依

  存关系,渗透辨证唯物主义思想教育。

  3、让学生通过小组合作、交流,尝试解决问题;培养学生的

  数学交流能力和合作能力。

  4、激发学生的学习兴趣,通过自学、讨论等方式的学习,培养学生自主学习能力。

  教学准备:

  1、两张卡片、2、多媒体演示课件

  〔评析〕为了体现当今新的教育观,即在课堂教学中,不仅要使儿童掌握一定的数学基础知识和基本技能,同时还要有目的去培养学生的数学能力。所以制定的目标体系全面、恰当。

  教学过程:

  一、复习整理、进一步理解和掌握整除的意义

  1、整除的含义

  ①让学生在小卡片上写一道除法算式

  ②黑板上展示学生的除法算式

  〔评析〕学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。

  ③教师提出问题:A、哪一道除法算式的被除数能被除数整除

  B、在什么情况下,才可以说“一个数能被另一个数整除”

  ④让学生分小组合作、交流,解决以上两个问题

  ⑤学生交流完毕,每小组派代表汇报本小组研究成果

  〔评析〕让学生合作、交流,尝试解决问题,这样的教学即给了学生一个人人参与、自主探索的机会,使学生理解和掌握了知识;又使学生在平等、自由、真诚悦纳的情意关系中学会了与人共处。

  2、抽象概括整除的概念

  ①师:如果用字母a表示被除数,用字母b表示除数,在什么情况下,a能被b整除?

  ②生:略

  ③师:让学生完整地概括整除的意义

  〔评析〕由于学生对整除的含义有了进一步的理解。所以通过学生讨论,师生对话,抽象概括出整除的概念,这样的教学,符合学生的认知规律,同时可培养学生的抽象概括能力。

  3、巩固练习

  ①下面哪一组的第一个数能被第二个数整除

  17和549和73.6和1.210和10

  ②下面四个数中谁能被谁整除

  2、3、6、12

  〔评析〕概念初步后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解

  二、新知教学,了解约数和倍数的意义

  1、提出问题,看书自学

  ①在什么情况下,a是b的倍数,b是a的约数。

  ②约数和倍数中的数一般指什么数?不包括什么数?

  ③你能仿照书中的(例1)举一个例子,说明一个数是另一个数的倍数,另一个数是这个数的约数

  2、学生自学,并回答问题及举例、说明理由。

  〔评析〕教师提出问题,学生带着问题去自学,这样的学习,即体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。

  3、明确约数和倍数的关系

  根据实例提出问题:45能被15整除,能不能单独说45是倍数、15是约数,为什么?

  生:略

  师生共同小结:约数和倍数是相互依存的.关系,不能单独地说一个数是倍数或约数。

  〔评析〕通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。突出了教学的重点,准确地把握了教学关键。

  4、巩固练习

  ①下面每组数中,谁是谁的倍数?谁是谁的约数?

  36和97和1445和451和100

  ②下列数中,谁是谁的倍数?谁又是谁的约数?

  1、2、6、12

  ③游戏

  规则:老师出示一个数,看你手中的卡片是否符合老师提出的条件,符合的请举起你的卡片。

  a、我是12,12能整除谁?

  你们是我的什么数?我又是你们的什么数?

  b、我是19,谁是我的约数?

  c、我是2,谁是我的倍数?

  d、我是1,谁是我的倍数?(小结:1是所有自然数的约数)

  e、让全体同学举起卡片,让具有数字6的同学指出自己的约数

  〔评析〕练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷。通过练习,即巩固了知识,又使全体学生不同程度得到了发展

  五、回顾反思,谈各人的收获。

  师:今天我们研究了什么?又是怎样研究的?你有什么收获?

  〔评析〕让学生总结本节课学习的方法,并谈自己的收获,这个过程不仅使学生明白了许多道理,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。

  〔反思〕:素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,笔者在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实践能力的发展有了切实的落脚点。

  综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求知、参与、成功、交流和自尊的需要。

【五年级数学下册教案】相关文章:

数学五年级下册教案01-19

五年级下册数学的教案03-12

小学数学五年级下册教案09-28

五年级数学下册教案02-10

数学五年级下册人教版教案01-12

小学数学下册教案11-15

五年级数学下册复习教案01-14

数学五年级下册教案15篇01-20

数学五年级下册教案(15篇)01-20

人教版五年级数学下册教案01-20