五年级上册数学点阵中的规律教案

时间:2023-03-09 09:56:25 数学教案 我要投稿

五年级上册数学点阵中的规律教案(3篇)

  作为一位杰出的老师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?以下是小编收集整理的五年级上册数学点阵中的规律教案,欢迎阅读与收藏。

五年级上册数学点阵中的规律教案(3篇)

五年级上册数学点阵中的规律教案1

  教学内容:

  北师大版小学数学五年级上册。(教科书第82、83页。)

  课标分析:

  本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。

  教材分析:

  本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。

  学生分析:

  1、学生的知识基础

  五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

  2、学生的能力基础

  学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的'思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

  教学目标:

  1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

  2、培养学生推理、观察、归纳和概括能力。

  3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

  教学重点:

  探究发现点阵中的规律。

  教学难点:

  总结概括规律。

  教学准备:

  课件,五子棋,磁扣等。

  教法学法:

  1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入

  2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思

  教学过程:

  一、展示图片,引出课题

  1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。

  师:这些图片有什么特点?

  生:好像都是由点组成的。

  师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。

  早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。

  二、细心观察,探求规律

  1、出示正方形点阵,探索正方形点阵的规律。

  A、第一个规律。

  师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)

  (1)每个点阵可以看成什么图形?

  (2)每个点阵中分别有多少个点?你是怎样观察出来的?

  小组讨论,指名回答。

  师:每个点阵可以看成什么图形?(正方形),同意吗?

  生1:我认为第一个点阵不能看成一个正方形,是一个圆形。

  师:其他同学也同意他的观点吗?

  师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?

  师:每个点阵中分别有多少个点?

  生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

  师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?

  生:我是通过数出每个点阵中点的个数得到的。

  师:谁还有不同的方法?有没有更快一些的方法?

  生:我是通过计算得到的。

  师:能具体说一说是怎样通过计算得到的吗?

  生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。

  师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?

  生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)

  师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)

  师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?

  (这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

  B、第2个规律

  师:刚才我们是怎样观察的?(横着数和竖着数)

  正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?

  “斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)

  观察并思考

  (1)分别用算式表示每个点阵点的个数。

  (2)你发现了什么规律?

  学生汇报,教师板书

  第1个:1=1

  第2个:1+2+1=4

  第3个:1+2+3+2+1=9

  第4个:1+2+3+4+3+2+1=16

  第N个:1+2+3+N++3+2+1

  师:“谁发现什么规律呢?”

  生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。

  师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

  刚才是横竖数,“第几个点阵就是几乘几”。

  C、第3个规律

  师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?

  师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。

  小组代表汇报。

  生:(总结)每用折线画一次后,点阵中的个数是

  1=1 1+3=4 1+3+5=9 1+3+5+7=16

  师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,

  师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”

  教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

  通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

  师:真了不起。这种划分方法,我们可以叫做“折线划分法”。

  第几个点阵,就是从1开始加几个连续奇数。

  通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。

  (在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)

  刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?

  (在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)

  三、牛刀小试

  1. (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?

  生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。

  小组交流,研究:上面的点阵还有其他的规律吗?

  生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

  生;1,1+2,1+2+3,1+2+3+4

  师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)

  上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)

  四、兴趣优在:(课件出示教材第83页练一练)

  第2题:按规律画出下一个图形。

  师:这道题就象梅花桩,指第一个,走了几个梅花桩?

  生:3个。

  师:指第二个,共走了几个梅花,增加几个桩?

  生:7个,增加了4个。

  师:指第三个,共走了几个梅花桩,又增加了几个桩?

  生:13个,又增加了6个。

  师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

  生:交流,探索总结规律

  (这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)

  五、知识拓展

  欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。

  师:点阵不只是点,很多有规律的排列,都可以看成点阵。

  投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。

  六、课堂小结

  师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?

  七、课后操作

  自创新的点阵图,并说出点阵规律。

五年级上册数学点阵中的规律教案2

  教学目标:

  1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;

  2.发展归纳与概括的能力;

  3.了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  引导学生发现和概括点阵中的规律

  教学难点:

  寻求多种解决问题的方法,体会图形与数的联系

  教学过程:

  一、创设情境,生成问题

  1.观察图形中的规律

  上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?

  (出示幻灯片3)3:生观察说规律,可提示,师总结)

  2.观察一组数的规律。

  看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 …)

  如果有困难不能出色完成,那我们今天就来一起研究,从而导入

  3.出示点子图

  同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)

  好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形——点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!

  二、探索交流,解决问题

  1.渗透不同的观察方法

  (1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。

  (2)指名说怎么观察的?它们之间有什么变化?

  (副板书:横竖看、斜着看、拐弯看)

  (3)设问,那第5个点阵有多少个点?请画出此图形。

  2.小组探究

  同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。

  合作任务

  1.选择一种观察顺序,用线条分一分这几个图中的点。

  2.根据划分的结果写出算式来表示这几个数。

  3.想一想,你们从中发现了什么规律?

  1=()4=()9=()16=()

  (1)学生分组探究,师巡视

  (2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)

  ①生展示分法、算式和规律——其他组补充——总结规律

  ②学生说算式师板书

  ③拓展a×a

  第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书5×5)第10个呢?

  后两种:下一个图形的算式是什么?(副板书下一个图形的算式)

  算一算结果是25吗?

  ④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!

  3.小结

  同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。

  4.揭示点阵

  那么,同学们,在寻找这一组数的`规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)

  点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。

  三、巩固应用,内化提高

  (一)试一试

  怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。

  1.观察下列点阵,你能根据规律画出下一个图形吗?

  请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)

  生画——展示:说明为什么这样画?(有不同的想法吗)

  2.下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。

  这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)

  生做——展示算式——拓展下一个,你能画出地5个图形,再来研究第4个图形。

  (拓展)你还有什么发现?展示幻灯片11。

  除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)

  (二)拓展延伸

  出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?

  我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。

  对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。

  四、回顾整理,反思提升

  1.同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)

  2.你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。

  板书设计:

  点阵中的规律

  1、正方形点阵

  2、长方形点阵

  3、三角形点阵

  4、其它点阵

  小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,

  感受数学文化的魅力,同一问题有不同的思路和解决方法。

五年级上册数学点阵中的规律教案3

  教学内容:北师大版五上第五单元《点阵中的规律》P82-83

  教学目标

  1、在活动中,通过观察前后图形中点的变化规律,推理得出后续图形中点的数量,体会到图形与数的联系,感受数学均衡美。

  2、培养学生推理、观察、概括能力。

  教学重点:引导学生发现与概括规律。

  教学难点:概括规律。

  教学过程:

  一、认识点阵:

  师:同学们,你们都知道自然数分成奇数和偶数,最早进行这样的划分的数学家叫毕达哥拉斯,他非常喜欢数学,他研究数学可不是为了考试和分数,就是因为喜欢,他对研究数的特征非常着迷,研究方法也很独特,他是把数想象成小石子或小圆点,摆成图形来研究数。今天我们也来看看吸引毕达哥拉斯的“点阵”和数之间到底有什么样的联系。

  (板书课题:点阵中的规律)。

  二、研究点阵:

  (一)出示点阵,提出问题

  ····

  ·······

  ·········

  ··········

  师:这就是他当时研究过的一组正方形点阵,有规律吗?如果由你来摆这组正方形点阵,你想怎么摆呢?

  (二)探索点阵中的`规律

  1、研究正方形点阵的规律

  (1)观察这些正方形点阵,我们可以得到哪些数?拿出草稿本思考并写下来。

  (2)你能写出算式表示点阵中点的个数吗?

  以小组为单位,讨论交流,巡视学生完成情况。

  (3)小组汇报研究结果。

  (4)尝试画出第五个图形,延伸到第六个图形。

  展示学生成果。

  (5)还有不同的算式表示这些点数吗?

  学生思考。

  (6)如果学生回答不出,教师演示摆的方法,从摆法上引导学生用算式表示点数。

  ·····

  ·····

  ·····

  ·····

  ·····

  (7):摆法不同,得到的算式也不相同,每组算式的特点,也就是正方形点阵的规律。有均衡的,有对称的,这就是数学之美。

  2、研究长方形的点阵规律

  (1)出示P83“试一试”第一题图

  ·····

  ·········

  ············

  ··············

  (1×2)()()()

  (2)师:你能找出这些长方形点阵有什么规律吗?

  你能画出第五个点阵吗?

  (3)小组讨论、交流。

  (4)汇报小组的发现,展示所画的第五个点阵。

  师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵。

  3、研究三角形点阵的规律

  (1)出示三角形点阵图

  ·

  ···

  ······

  ··········

  (1)(3)(6)(10)

  (2)师:①这是一组什么形状的点阵?

  ②你能用算式表示你发现的规律吗?

  ③根据点阵规律,画出第五个点阵。

  (3)展示根据你发现的规律画出的第五个点阵。

  (三):

  其实,点阵是灵活多样的,每个点阵都有自己的规律,只要我们找到规律,就能推出后面点阵的点数。借助点阵图,不同的观察方法,可以得到不同的数的规律,正所谓“远看成岭近成峰,远近高低各不同”。

  三、解决点阵问题:

  (一)学生观察课本P83练一练第2题图,小组内说说他们的规律,然后小组合作画出下一个图形。

  (二)汇报,展示,说说规律。

  四、设计点阵:

  (一)师:刚才,我们共同研究了一些点阵的规律。现在,你想自己设计一个点阵吗?接下来,我们就以小组为单位,开展一个点阵设计大赛,好吗?

  (二)出示要求:

  点阵设计大赛:

  1、设计时间:5分钟

  2、设计要求:

  (1)小组合作,共同设计一幅有规律的、美观的点阵图,画出前4个点阵,并用算式表示每个点阵的数量。

  (2)每组派代表说明设计的方法及点阵中的规律,并展示作品。

  小组内自由设计,展示。

  五、感受点阵:

  师:同学们个个都是个出色的小设计师!点阵的运用,在生活中也十分常见。比如:我们常玩的五子棋,围棋,跳棋都是点阵的运用。一些大型活动的展示标志,广场上美丽的花坛,由点阵构成的各种图案等等。可以说,生活中,处处离不开点阵的规律,离不开数学的知识。那么,就让我们用希腊数学家普洛克拉的一句话结束今天的学习:

  哪里有数学,哪里就有美!数学美把自然规律抽象成一幅简洁准确的图像。

【五年级上册数学点阵中的规律教案】相关文章:

五年级上册数学点阵中的规律教案03-09

五年级上册数学点阵中的规律教案5篇03-09

五年级上册数学点阵中的规律教案3篇03-09

小学五年级上数学北师大版《点阵中的规律》教案08-26

北师大版5年级上册数学《点阵中的规律》教学反思09-28

规律数学教案10-10

数学《商不变的规律》教案03-29

《找规律》数学教案02-11

数学教案:找规律08-02