五年级上册数学点阵中的规律教案

时间:2023-03-09 09:25:58 数学教案 我要投稿

五年级上册数学点阵中的规律教案

  作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,教案是教材及大纲与课堂教学的纽带和桥梁。我们该怎么去写教案呢?以下是小编为大家收集的五年级上册数学点阵中的规律教案,仅供参考,希望能够帮助到大家。

五年级上册数学点阵中的规律教案

五年级上册数学点阵中的规律教案1

  教学目标:

  知识与技能:能观察发现点阵中的规律,体会“图形与数”的联系。

  过程与方法:发展归纳和概括的能力。

  情感态度与价值观:感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

  教学重点:

  探究发现点阵中的规律。

  教学难点:

  独立发现同一点阵中不同的规律。

  教学过程:

  (教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。)

  一、创设问题情境

  指导学生观察所提供图

  形的基本形状。

  1、提供的四个图形的均是三角形,第一个图形除外。

  板书:1点字的个数是如何增加的?

  2、观察四个图形均是正方形(第一个除外)你能写出算式吗?

  1×1 2×2 3×3 4×4 □×□

  3、第三、四组的四个图形请示去自己去探索,发现规律。

  观察图形,思考,反馈。

  学生探索、发现。

  设计意图:随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生不用数,已经忍不住地说出了点数。说明学生已经发现了这组正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。

  二、小组合作探究。

  指导学生观察前后图

  学生观察提供的第一组点字图,交流点字的个数是如何增加的,然后用算式表示出来。

  学生观察第二组四个图形,点字的个数有什么变化,

  在小组内说一说,然后用算式表示出来。

  学生独立观察思考这两组图形点不变化的情况,有什么规律。

  引导学生观察所给图形的基本形状及点字变化情况。

  学生观察、思考、汇报。学生谈体会

  设计意图:让学生寻找正方形点阵的不同划分方法,把教材分散处理的关于正方形点阵的不同划分方法集中探究,便于学生思维的延续和拓展,不至于出现思维上的断层。这样设计既符合学生的探究心理和学习习惯,又给学生提供了自主探究的'空间,体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。

  三、汇报交流质疑问难。

  学生通过观察前后图形中点的变化情况,从而推导出后续图形点的数量。引导学生观察前后图形点的个数是如何增加的。

  1、点字图是三角形的点字个数后一层比前一层多。

  2、正文形、长方形点子数是成倍增加。

  3、第(4)组图点子数是怎样变化的。

  4、指导学生观察前后的算式。

  仅观察图形并不能直接发现规律,并与图形对应起来。学生观察读图,思考。

  议论交流。

  设计意图:学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有预想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。我真的很庆幸给了他一个机会,他用如此精彩的回答回报了我,也许课堂教学永远的魅力就在于这预设外的惊喜吧。

  四、练习巩固。

  第1题,有两小题都是根据图形的变化的特点,推理出后续的图形。

  第二题,是观察图形排列的变化

  学生先独立思考:各图形点子个数是如何增加的,然后小组内交流,最后全班进行交流。

  学生补充完算式,找出规律再写出一个算式来。

  先让学生独立思考,然后组织学生进行交流。

  通过这样的观察,也能知道后面图形排列的特点,从而计算出后面图形点的数量。

  根据图形变化发现这一变化规律。

  学生独立思考后小组交流。

  学生观察并找出其中规律。

  设计意图:在这里不需要学生说出多么专业的、深奥的数学方法,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生是用自己的语言在表述自己的想法,就是对学生思维训练层次的一个提升,一种飞越。

  五、总结概括

  这节课你有什么收获?讲给同学们听听。

  六、作业

  1、练一练2题

  2、你在生活中那里发现过有规律的东西?用你喜欢的方法记录表示它们的规律。

  学生思考,交谈,总结。

  设计意图:把学生的课堂学习延伸到课外,链接到学生已有的相关生活经验,使得原本陌生的数学知识与学生的日常生活自然对接,体现了数学与生活的密切联系。学生课后的自主设计作业,给了学生极大的创造空间,真正体现数学来源于生活,又应用于生活。

  板书设计:

  点阵中的规律

  正方形数、相同数

  连续奇数

  连续自然数——倒加

  1 =1×1 4 =2×2 =1+3 =1+2+1

  9 =3×3 =1+3+5 =1+2+3+2+1

  16 =4×4 =1+3+5+7 =1+2+3+4+3+2+1

  25 =5×5 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1

五年级上册数学点阵中的规律教案2

  教学内容:

  北师大版小学数学五年级上册。(教科书第82、83页。)

  课标分析:

  本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。

  教材分析:

  本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。

  学生分析:

  1、学生的知识基础

  五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

  2、学生的能力基础

  学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

  教学目标:

  1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

  2、培养学生推理、观察、归纳和概括能力。

  3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

  教学重点:

  探究发现点阵中的规律。

  教学难点:

  总结概括规律。

  教学准备:

  课件,五子棋,磁扣等。

  教法学法:

  1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入

  2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思

  教学过程:

  一、展示图片,引出课题

  1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。

  师:这些图片有什么特点?

  生:好像都是由点组成的。

  师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。

  早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。

  二、细心观察,探求规律

  1、出示正方形点阵,探索正方形点阵的规律。

  A、第一个规律。

  师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)

  (1)每个点阵可以看成什么图形?

  (2)每个点阵中分别有多少个点?你是怎样观察出来的?

  小组讨论,指名回答。

  师:每个点阵可以看成什么图形?(正方形),同意吗?

  生1:我认为第一个点阵不能看成一个正方形,是一个圆形。

  师:其他同学也同意他的观点吗?

  师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?

  师:每个点阵中分别有多少个点?

  生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

  师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?

  生:我是通过数出每个点阵中点的个数得到的。

  师:谁还有不同的方法?有没有更快一些的方法?

  生:我是通过计算得到的。

  师:能具体说一说是怎样通过计算得到的吗?

  生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。

  师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的`序号,那么正方形点阵点的个数是多少呢?

  生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)

  师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)

  师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?

  (这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

  B、第2个规律

  师:刚才我们是怎样观察的?(横着数和竖着数)

  正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?

  “斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)

  观察并思考

  (1)分别用算式表示每个点阵点的个数。

  (2)你发现了什么规律?

  学生汇报,教师板书

  第1个:1=1

  第2个:1+2+1=4

  第3个:1+2+3+2+1=9

  第4个:1+2+3+4+3+2+1=16

  第N个:1+2+3+N++3+2+1

  师:“谁发现什么规律呢?”

  生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。

  师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

  刚才是横竖数,“第几个点阵就是几乘几”。

  C、第3个规律

  师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?

  师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。

  小组代表汇报。

  生:(总结)每用折线画一次后,点阵中的个数是

  1=1 1+3=4 1+3+5=9 1+3+5+7=16

  师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,

  师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”

  教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

  通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

  师:真了不起。这种划分方法,我们可以叫做“折线划分法”。

  第几个点阵,就是从1开始加几个连续奇数。

  通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。

  (在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)

  刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?

  (在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)

  三、牛刀小试

  1. (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?

  生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。

  小组交流,研究:上面的点阵还有其他的规律吗?

  生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

  生;1,1+2,1+2+3,1+2+3+4

  师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)

  上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)

  四、兴趣优在:(课件出示教材第83页练一练)

  第2题:按规律画出下一个图形。

  师:这道题就象梅花桩,指第一个,走了几个梅花桩?

  生:3个。

  师:指第二个,共走了几个梅花,增加几个桩?

  生:7个,增加了4个。

  师:指第三个,共走了几个梅花桩,又增加了几个桩?

  生:13个,又增加了6个。

  师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

  生:交流,探索总结规律

  (这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)

  五、知识拓展

  欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。

  师:点阵不只是点,很多有规律的排列,都可以看成点阵。

  投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。

  六、课堂小结

  师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?

  七、课后操作

  自创新的点阵图,并说出点阵规律。

五年级上册数学点阵中的规律教案3

  教学内容:

  北师大版小学数学五年级上册第82——83页的内容。

  教学目标:

  1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。

  2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。

  3、培养学生观察、概括与推理的能力。

  4、了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  通过观察活动,引导学生探索发现“点阵”中隐藏的规律。

  教学难点:

  能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。

  教学准备:

  (师)多媒体课件;(生)彩笔。

  教学过程:

  一、谈话引入

  (老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)

  二、探究正方形点阵中的规律

  1、探究正方形点阵的规律。

  (1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。

  教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?

  (随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)

  (2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?

  (学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)

  (3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。

  (学生独立画出第五个5×5的点阵图)

  (4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?

  (结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)

  小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?

  (学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)

  小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。

  2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。

  (1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?

  学生会有如下发现

  ①是用折线划分开的。

  ②每条线内的点分别是1、3、5、7、9。

  ③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。

  (2)如果把每条线所包围的点子数记下来,如何用算式来表示?

  第一条线:1 = 1;

  第二条线:1+3 = 4;

  第三条线:1+3+5 = 9;

  第四条线:1+3+5+7 = 16;

  第五条线:1+3+5+7+9 = 25;

  (3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)

  (第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)

  (4)思考:表示这个正方形点阵的点数的算式有什么特点?

  (这个点阵的点子总数可以看作是连续奇数的和。)

  (5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?

  1+3+5+7+9+11=36;

  (6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?

  学生的划分有以下几种

  ①横向划分:用算式表示为5+5+5+5+5;

  ②竖向划分:用算式表示为5+5+5+5+5;

  ③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;

  至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?

  学生的发现如下

  算式里的.数是5;

  从1开始加到5再加回到1;

  这个算式是两边对称的;

  这个点阵的点数是中间那个数字5乘5的积;

  教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?

  (在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)

  三、延伸应用,形成策略

  1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?

  (学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)

  2、请大家尝试运用前面学会的方法探究长方形点阵规律。

  (1)小组合作研究:如何用算式表示每个长方形点阵的点子数?

  学生通过讨论很快达成共识

  1×2;2×3;3×4;4×5;

  (2)请你独立画出第五个长方形点阵并用算式表示出点数。

  (学生独立画图并写出算式,互相交流。)

  算式表示为:5×6;

  (3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?

  (学生的发现为:乘法算式中的第二个因数总是比第一个因数多1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)

  (4)照这样继续写,你能写出第n个长方形点阵的点数吗?

  学生可以很顺利地写出:n×(n+1)。

  3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求

  (1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。

  (2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。

  (学生活动)

  全班交流

  划分一:横向划分,1+2+3+4+5=15;

  划分二:竖向划分,1+2+3+4+5=15;

  划分三:斜向划分,1+2+3+4+5=15;

  划分四:折线划分,1+5+9=15;

  (对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)

  4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?

  学生交流

  仔细观察点阵的形状;

  数清每一行的点子数;

  看清前后两个点阵的变化……

  (在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)

  四、课堂总结

  1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?

  学生交流

  五子棋、阅兵式的方队、节日的花坛……

  2、课后继续搜集点阵的相关资料,下节课继续交流。

  (在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)

五年级上册数学点阵中的规律教案4

  教学目标:

  1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;

  2.发展归纳与概括的能力;

  3.了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  引导学生发现和概括点阵中的规律

  教学难点:

  寻求多种解决问题的方法,体会图形与数的联系

  教学过程:

  一、创设情境,生成问题

  1.观察图形中的规律

  上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?

  (出示幻灯片3)3:生观察说规律,可提示,师总结)

  2.观察一组数的规律。

  看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 …)

  如果有困难不能出色完成,那我们今天就来一起研究,从而导入

  3.出示点子图

  同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)

  好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形——点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!

  二、探索交流,解决问题

  1.渗透不同的观察方法

  (1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。

  (2)指名说怎么观察的?它们之间有什么变化?

  (副板书:横竖看、斜着看、拐弯看)

  (3)设问,那第5个点阵有多少个点?请画出此图形。

  2.小组探究

  同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的.合作研究;再次出示幻灯片6。

  合作任务

  1.选择一种观察顺序,用线条分一分这几个图中的点。

  2.根据划分的结果写出算式来表示这几个数。

  3.想一想,你们从中发现了什么规律?

  1=()4=()9=()16=()

  (1)学生分组探究,师巡视

  (2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)

  ①生展示分法、算式和规律——其他组补充——总结规律

  ②学生说算式师板书

  ③拓展a×a

  第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书5×5)第10个呢?

  后两种:下一个图形的算式是什么?(副板书下一个图形的算式)

  算一算结果是25吗?

  ④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!

  3.小结

  同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。

  4.揭示点阵

  那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)

  点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。

  三、巩固应用,内化提高

  (一)试一试

  怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。

  1.观察下列点阵,你能根据规律画出下一个图形吗?

  请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)

  生画——展示:说明为什么这样画?(有不同的想法吗)

  2.下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。

  这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)

  生做——展示算式——拓展下一个,你能画出地5个图形,再来研究第4个图形。

  (拓展)你还有什么发现?展示幻灯片11。

  除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)

  (二)拓展延伸

  出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?

  我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。

  对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。

  四、回顾整理,反思提升

  1.同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)

  2.你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。

  板书设计:

  点阵中的规律

  1、正方形点阵

  2、长方形点阵

  3、三角形点阵

  4、其它点阵

  小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,

  感受数学文化的魅力,同一问题有不同的思路和解决方法。

五年级上册数学点阵中的规律教案5

  教学内容:北师大版五上第五单元《点阵中的规律》P82-83

  教学目标

  1、在活动中,通过观察前后图形中点的变化规律,推理得出后续图形中点的数量,体会到图形与数的联系,感受数学均衡美。

  2、培养学生推理、观察、概括能力。

  教学重点:引导学生发现与概括规律。

  教学难点:概括规律。

  教学过程:

  一、认识点阵:

  师:同学们,你们都知道自然数分成奇数和偶数,最早进行这样的划分的数学家叫毕达哥拉斯,他非常喜欢数学,他研究数学可不是为了考试和分数,就是因为喜欢,他对研究数的特征非常着迷,研究方法也很独特,他是把数想象成小石子或小圆点,摆成图形来研究数。今天我们也来看看吸引毕达哥拉斯的“点阵”和数之间到底有什么样的联系。

  (板书课题:点阵中的规律)。

  二、研究点阵:

  (一)出示点阵,提出问题

  ····

  ·······

  ·········

  ··········

  师:这就是他当时研究过的一组正方形点阵,有规律吗?如果由你来摆这组正方形点阵,你想怎么摆呢?

  (二)探索点阵中的规律

  1、研究正方形点阵的规律

  (1)观察这些正方形点阵,我们可以得到哪些数?拿出草稿本思考并写下来。

  (2)你能写出算式表示点阵中点的个数吗?

  以小组为单位,讨论交流,巡视学生完成情况。

  (3)小组汇报研究结果。

  (4)尝试画出第五个图形,延伸到第六个图形。

  展示学生成果。

  (5)还有不同的算式表示这些点数吗?

  学生思考。

  (6)如果学生回答不出,教师演示摆的方法,从摆法上引导学生用算式表示点数。

  ·····

  ·····

  ·····

  ·····

  ·····

  (7):摆法不同,得到的算式也不相同,每组算式的特点,也就是正方形点阵的规律。有均衡的,有对称的,这就是数学之美。

  2、研究长方形的点阵规律

  (1)出示P83“试一试”第一题图

  ·····

  ·········

  ············

  ··············

  (1×2)()()()

  (2)师:你能找出这些长方形点阵有什么规律吗?

  你能画出第五个点阵吗?

  (3)小组讨论、交流。

  (4)汇报小组的发现,展示所画的第五个点阵。

  师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的.点阵。

  3、研究三角形点阵的规律

  (1)出示三角形点阵图

  ·

  ···

  ······

  ··········

  (1)(3)(6)(10)

  (2)师:①这是一组什么形状的点阵?

  ②你能用算式表示你发现的规律吗?

  ③根据点阵规律,画出第五个点阵。

  (3)展示根据你发现的规律画出的第五个点阵。

  (三):

  其实,点阵是灵活多样的,每个点阵都有自己的规律,只要我们找到规律,就能推出后面点阵的点数。借助点阵图,不同的观察方法,可以得到不同的数的规律,正所谓“远看成岭近成峰,远近高低各不同”。

  三、解决点阵问题:

  (一)学生观察课本P83练一练第2题图,小组内说说他们的规律,然后小组合作画出下一个图形。

  (二)汇报,展示,说说规律。

  四、设计点阵:

  (一)师:刚才,我们共同研究了一些点阵的规律。现在,你想自己设计一个点阵吗?接下来,我们就以小组为单位,开展一个点阵设计大赛,好吗?

  (二)出示要求:

  点阵设计大赛:

  1、设计时间:5分钟

  2、设计要求:

  (1)小组合作,共同设计一幅有规律的、美观的点阵图,画出前4个点阵,并用算式表示每个点阵的数量。

  (2)每组派代表说明设计的方法及点阵中的规律,并展示作品。

  小组内自由设计,展示。

  五、感受点阵:

  师:同学们个个都是个出色的小设计师!点阵的运用,在生活中也十分常见。比如:我们常玩的五子棋,围棋,跳棋都是点阵的运用。一些大型活动的展示标志,广场上美丽的花坛,由点阵构成的各种图案等等。可以说,生活中,处处离不开点阵的规律,离不开数学的知识。那么,就让我们用希腊数学家普洛克拉的一句话结束今天的学习:

  哪里有数学,哪里就有美!数学美把自然规律抽象成一幅简洁准确的图像。

【五年级上册数学点阵中的规律教案】相关文章:

五年级上册数学点阵中的规律教案5篇03-09

五年级上册数学点阵中的规律教案3篇03-09

五年级上册数学点阵中的规律教案(3篇)03-09

小学五年级上数学北师大版《点阵中的规律》教案08-26

北师大版5年级上册数学《点阵中的规律》教学反思09-28

规律数学教案10-10

数学教案:找规律08-02

数学《商不变的规律》教案03-29

《找规律》数学教案02-11