六年级数学教案《圆锥的体积》

时间:2023-03-05 14:24:00 数学教案 我要投稿

六年级数学教案《圆锥的体积》7篇

  作为一名优秀的教育工作者,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。写教案需要注意哪些格式呢?以下是小编帮大家整理的六年级数学教案《圆锥的体积》,希望对大家有所帮助。

六年级数学教案《圆锥的体积》7篇

六年级数学教案《圆锥的体积》1

  教学内容:

  冀教版小学数学六年级下册第40~42页。

  教学目标:

  1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

  2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

  3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

  教学重点:

  了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

  教学难点:

  理解圆锥的高和圆锥体积公式中Sh表示的实际意义。

  教具学具:

  1、等底等高的圆柱和圆锥型容器,一些沙子。

  2、多媒体课件。

  教学流程:

  一、炫我两分钟

  主持学生指名叫学生回答下列问题

  1.圆柱有几个面?各有什么特点?

  2.怎样计算圆柱的体积?

  学生回答问题。

  【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

  二、创设情境

  1.教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

  2.出示问题情境

  最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的`底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

  【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

  三、探究新知

  尝试小研究一(课前):了解圆锥的特点

  1.观察圆锥形的物体或图片,它们有哪些特点?我的发现

  2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

  3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

六年级数学教案《圆锥的体积》2

  目 标:

  1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。

  2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。

  3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。

  重 点:

  掌握圆锥体积的方法

  难 点:

  公式的推导

  准 备:

  沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥

  教 程:

  一、准备

  同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的'呢?

  二、诱发

  课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的体积吗?它和圆柱的体积有什么联系呢?这就是我们这节课要学习的内容。

  三、探究释疑

  1、初次猜想

  ⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?

  ⑵圆锥的体积是否能用“底面积×高”来计算呢

  ⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。

  2、再次猜想

  ⑴通过模型演示,

  ⑵根据学生回答,从而得到如下结论:

  圆锥的体积 = ×圆柱的体积(等底等高)

  3、分组实验进行验证

  ⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。

  ⑵分组讨论,分组汇报

  圆锥的体积 = ×圆柱的体积(等底等高)

  用字母表示:V=1/3Sh

  4、联系实际,进行运用

  ⑴出示例1,学生尝试练习,集体订正。

  ⑵教学例2、课件出示:

  麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。

  编好后,分组讨论计算

  学生自己列式计算,集体订正

  四、转化

  1、基础题

  ⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的体积吗?为什么?

  24立方米 9立方米 12立方米

  ⑵一个圆锥的底面直径是4厘米,高5厘米,它的体积是多少?

  2、提高题

  有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?

  3、思考题

  把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)

  五、应用

  1、 基础题:P44-T3、4

  2、 提高题:P45-T10

  3、 思考题:P45-T11、12

六年级数学教案《圆锥的体积》3

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:

  长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具

  演示得出圆锥体积等于等底等高圆柱体积的 的教具。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  理解和掌握圆锥体积的计算公式。

  教学过程:

  一、复习引新

  1. 说出圆柱的体积计算公式。

  2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

  这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、教学新课

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  5.教学圆锥高的测量方法。(见课本第13页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看

  你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的'体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验

  得出只有等底等高的圆锥才是圆柱体积的 。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积

  =底面积高

  用字母表示:V= Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 ?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、巩固练习

  1.做练一练第2题。

  指名一人板演,其余学生做在练习本上。集体订正,强调要乘以 。

  2.做练习三第2题。

  学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

  3.做练习三第3题。

  让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

  四、课堂小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  五、课堂作业

  练习三第4、5题。

六年级数学教案《圆锥的体积》4

  教学目标

  1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

  2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

  3、培养学生认真审题,仔细计算的习惯。

  重点:

  进一步掌握圆锥的体积计算及应用

  难点

  圆锥体积公式的灵活运用

  教学过程

  一、知识回顾

  1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

  2、学生说,教师板书:

  圆锥圆柱

  特征1个底面2个

  扇形侧面展开长方形

  体积V=1/3SHV=SH

  二、提出本节课练习的内容和目标

  三、课堂练习

  (一)、基本训练

  1、填空课本1----2(独立完成后校对)

  2、圆锥的体积计算

  已知:底面积、直径、周长与高求体积(小黑板出示)

  (二)、综合训练:

  1、判断

  (1)圆锥的体积等于圆柱的1/3

  (2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH

  (3)一个圆柱形容器盛满汽油有2.5升,这个容器的`容积就是2.5升

  (4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米

  2、应用:练习四第45题任选一题

  3、发展题:独立思考后校对

  四课堂小结:说说本节课的收获

六年级数学教案《圆锥的体积》5

  教学目标

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  教学重点

  圆锥体体积计算公式的推导过程.

  教学难点

  正确理解圆锥体积计算公式.

  教学步骤

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 1 2 3 4 5

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的'底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

  板书:

  5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  板书:

  答:这个零件的体积是76立方厘米.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  (三)教学例2

  1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  思考:这道题已知什么?求什么?

  要求小麦的重量,必须先求什么?

  要求小麦的体积应怎么办?

  这道题应先求什么?再求什么?最后求什么?

  2、学生独立解答,集体订正.

六年级数学教案《圆锥的体积》6

  教学内容

  教科书第39~40页例1,课堂活动及练习九第1题,第2题。

  教学目标

  1、在操作和探究中理解并掌握圆锥的体积计算公式。

  2、引导学生探究、发现,培养学生的观察、归纳等能力。

  3、在实验中,培养学生的数学兴趣,发展学生的空间观念。

  教学重点

  圆锥体积的计算公式的推导过程。

  教学难点

  圆锥体积计算公式的理解。

  教学过程

  一、情景铺垫,引入课题

  教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。

  出示问题:到底选哪种蛋糕划算呢?

  教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?

  学生明白首先要求出圆锥形蛋糕的体积。

  教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。

  揭示课题。板书课题:圆锥的体积

  二、自主探究,感悟新知

  1、提出猜想,大胆质疑

  教师:谁来猜猜圆锥的体积怎么算?

  2、分组合作,动手实验

  教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。

  教师布置任务并提出要求。

  每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。

  学生小组合作探究,教师巡视指导,参与学生的活动。

  3、教师用展示实验报告单

  教师:你们采用了哪些方法研究等底等高的`圆柱和圆锥之间的关系?通过实验,你们发现了什么?

  方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积高,所以圆锥的体积=1/3圆柱的体积。

  方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。

  教师:二个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。

  教师把学生们的实验过程演示一遍,让学生再经历一次圆锥体积的探究过程。

  4、公式推导

  教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?

  教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。

  板书:圆柱的体积=底面积高

  V=sh

  ↓〖4〗↓〖6〗↓

  圆锥的体积=1/3底面积高

  V=1/3sh

  教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?

  抽学生回答,教师板书:V=1/3sh

  教师引导学生理解公式,弄清公式中的s表示什么,h表示什么。

  要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。

  5、运用所学知识解决问题

  教学例1。

  一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?

  学生读题,找出题中的条件和问题。

  引导学生弄清铅锤的形状是圆锥形。

  学生独立解答。抽学生上台展示解答情况并说出思考过程。

  三、拓展应用,巩固新知

  1、教科书第42页第1题

  学生独立解答,集体订正。

  2、填一填

  (1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。

  (2)等底等高的圆柱的体积是圆锥体积的()倍。

  抽生回答,熟悉圆锥的体积计算公式。

  3、把下列表格补充完整

  形状底面积s(m2)高h(m)体积V(m3)

  圆锥159

  圆柱160.6

  学生在解答时,教师巡视指导。

  4、教科书第42页练习九第2题

  分组解答,抽生板算。教师带领学生集体订正。

  5、应用公式解决实际问题

  教师:现在我们再来帮助这两个同学解决他们的难题。

  要求学生独立解答新课前买蛋糕的问题。

  抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。

  四、课堂总结

  教师:这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?

六年级数学教案《圆锥的体积》7

  学情分析

  美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。

  教学过程

  一、复习旧知,铺垫孕伏

  1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

  2.复习高的概念。

  (1)什么叫圆锥的高?

  (2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  评析:

  圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

  二、创设情境,引发猜想

  1. 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的'狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2. 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

  评析:

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

  三、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1. 小组实验。

【六年级数学教案《圆锥的体积》】相关文章:

数学教案-圆锥的体积09-29

圆锥的体积09-29

圆锥的体积教案12-17

圆锥的体积-教案12-17

圆锥的体积教案02-24

六年级数学教案《圆锥的体积》03-05

《圆锥的体积》教学反思04-03

圆锥的体积教学反思05-14

《圆锥的体积》教学反思10-10

《圆锥的体积》的教学反思10-12