数学八年级上册教案

时间:2023-07-28 14:40:14 晓怡 数学教案 我要投稿

数学八年级上册教案(通用20篇)

  作为一名人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?以下是小编精心整理的数学八年级上册教案,希望对大家有所帮助。

数学八年级上册教案(通用20篇)

  数学八年级上册教案 1

  【学习目标】

  1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

  2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。

  【学习重点】

  探索和掌握等腰三角形的性质及其应用。

  【学习难点】

  等腰三角形的性质的应用。

  【学习 过程】

  一、你知道吗?

  等腰三角形的有关概念

  《等腰三角形应用》讲义

  课前预习

  1.SAS,SSS,ASA,AAS,HL

  2.这条线段的两个端点的距离相等

  3.这个角的两边的`距离相等

  4.这样的点有4个

  知识点睛

  1.线段垂直平分线上的点到这条线段的两个端点的距离相等

  2.角平分线上的点到这个角的两边距离相等

  3.顶角的平分线 底边上的中线 底边上的高 三线合一

  《13.3等腰三角形》专项练习

  1、填空题

  2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。

  数学八年级上册教案 2

  设置依据教学目标

  1、了解多面体、直棱柱的有关概念

  2、会认直棱柱的侧棱、侧面、底面.

  3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.

  教学重点与难点

  教学重点:直棱柱的有关概念

  教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

  教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型

  教 学 过 程

  内容与环节预设、简明设计意图二度备课(即时反思与纠正)

  一、创设情景,引入新课

  师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的`立体图形呢?

  析:学生很容易回答出更多的答案。

  师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

  二、合作交流,探求新知

  1.多面体、棱、顶点概念:

  师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?

  析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点

  2.合作交流

  师:以学习小组为单位,拿出事先准备好的几何体。

  学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描述其特征。)

  师:同学们再讨论一下,能否把自己的语言转化为数学语言。

  学生活动:分小组讨论。

  说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

  师:请大家找出与长方体,立方体类似的物体或模型。

  析:举出实例。(找出区别)

  师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

  侧面都是长方形含正方形。

  长方体和正方体都是直四棱柱。

  3.反馈巩固

  完成“做一做”

  析:由第(3)小题可以得到:

  直棱柱的相邻两条侧棱互相平行且相等。

  4.学以致用

  出示例题。(先请学生单独考虑,再作讲解)

  析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)

  最后完成例题中的“想一想”

  5.巩固练习(学生练习)

  完成“课内练习”

  三、小结回顾,反思提高

  师:我们这节课的重点是什么?哪些地方比较难学呢?

  合作交流后得到:重点直棱柱的有关概念。

  直棱柱有以下特征:

  有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

  侧面都是长方形含正方形。

  例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

  板书设计

  作业布置或设计作业本及课时特训

  数学八年级上册教案 3

  【教学目标】

  知识与技能

  会推导平方差公式,并且懂得运用平方差公式进行简单计算。

  过程与方法

  经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

  情感、态度与价值观

  通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

  【教学重难点】

  重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

  难点:平方差公式的应用。

  关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

  【教学过程】

  一、创设情境,故事引入

  【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事

  【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

  【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

  【学生回答】多项式乘以多项式。

  【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

  【问题牵引】计算:

  (1)(x+2)(x—2);(2)(1+3a)(1—3a);

  (3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

  【学生活动】分四人小组,合作学习,获得以下结果:

  (1)(x+2)(x—2)=x2—4;

  (2)(1+3a)(1—3a)=1—9a2;

  (3)(x+5y)(x—5y)=x2—25y2;

  (4)(y+3z)(y—3z)=y2—9z2。

  【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

  【学生活动】讨论

  【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

  【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

  【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

  二、范例学习,应用所学

  【教师讲述】

  平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

  例1:运用平方差公式计算:

  (1)(2x+3)(2x—3);

  (2)(b+3a)(3a—b);

  (3)(—m+n)(—m—n)。

  《乘法公式》同步练习

  二、填空题

  5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

  6、若32×83=2n,则n=______。

  《乘法公式》同步测试题

  25、利用正方形的`面积公式和梯形的面积公式即可求解;

  根据所得的两个式子相等即可得到。

  此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

  26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

  等式左边减数的底数与序号相同,由此得出第n个式子;

  数学八年级上册教案 4

  一、教学目标:

  1、加深对加权平均数的理解

  2、会根据频数分布表求加权平均数,从而解决一些实际问题

  3、会用计算器求加权平均数的值

  二、重点、难点和难点的突破方法:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  3、难点的突破方法:

  首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

  三、例习题的意图分析

  1、教材P140探究栏目的意图。

  (1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

  (2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

  2、教材P140的思考的意图。

  (1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

  (2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

  3、P141利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

  四、课堂引入

  采用教材原有的引入问题,设计的几个问题如下:

  (1)、请同学读P140探究问题,依据统计表可以读出哪些信息

  (2)、这里的组中值指什么,它是怎样确定的?

  (3)、第二组数据的频数5指什么呢?

  (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

  五、随堂练习

  1、某校为了了解学生作课外作业所用时间的'情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

  所用时间t(分钟)人数

  0

  0<≤ 6

  2020>

  30

  40

  50

  (1)、第二组数据的组中值是多少?

  (2)、求该班学生平均每天做数学作业所用时间

  2、某班40名学生身高情况如下图,

  请计算该班学生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、课后练习:

  1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

  部门A B C D E F G

  人数1 1 2 4 2 2 5

  每人创得利润20 5 2.5 2 1.5 1.5 1.2

  该公司每人所创年利润的平均数是多少万元?

  2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

  年龄频数

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

  答案:1.约2.95万元

  2.约29岁

  3.60.54分贝

  数学八年级上册教案 5

  教学目标:

  理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.

  教学重点与难点:

  正确理解同底数幂的乘法法则以及适用范围.

  教学过程:

  一、回顾幂的相关知识

  an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.

  二、创设情境,感觉新知

  问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?

  学生分析,总结结果

  1012×103=()×(10×10×10)==1015.

  通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.

  学生动手:

  计算下列各式:

  (1)25×22

  (2)a3·a2

  (3)5m·5n(m、n都是正整数)

  教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.

  得到结论:

  (1)特点:这三个式子都是底数相同的幂相乘.相乘结果的'底数与原来底数相同,指数是原来两个幂的指数的和.

  (2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:

  am·an=()·()=()=am+n

  am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加

  三、小结:

  同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.

  注意两点:

  一是必须是同底数幂的乘法才能运用这个性质;

  二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n

  数学八年级上册教案 6

  一.教学目标:

  1.了解方差的定义和计算公式。

  2.理解方差概念的产生和形成的过程。

  3.会用方差计算公式来比较两组数据的波动大小。

  二.重点、难点和难点的突破方法:

  1.重点:方差产生的必要性和应用方差公式解决实际问题。

  2.难点:理解方差公式

  3.难点的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

  (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

  (2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

  (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

  三.例习题的意图分析:

  1.教材P125的讨论问题的意图:

  (1).创设问题情境,引起学生的学习兴趣和好奇心。

  (2).为引入方差概念和方差计算公式作铺垫。

  (3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

  (4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

  2.教材P154例1的设计意图:

  (1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

  (2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

  四.课堂引入:

  除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

  五.例题的分析:

  教材P154例1在分析过程中应抓住以下几点:

  1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

  2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

  3.方差怎样去体现波动大小?

  这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

  六.随堂练习:

  1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  问:(1)哪种农作物的苗长的比较高?

  (2)哪种农作物的.苗长得比较整齐?

  2.段巍和小金两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

  测试次数1 2 3 4 5

  段巍13 14 13 12 13

  小金10 13 16 14 12

  参考答案:1.(1)甲、乙两种农作物的苗平均高度相同

  (2)甲整齐

  2.段巍的成绩比小金的成绩要稳定。

  七.课后练习:

  1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

  3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

  4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  选择小兵参加比赛。

  数学八年级上册教案 7

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:

  体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:

  对于平均数、中位数、众数在不同情境中的应用。

  教学方法:

  归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的.算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:

  复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:

  复习题B组、C组(选做)

  数学八年级上册教案 8

  教学目标:

  1.知道负整数指数幂=(a≠0,n是正整数).

  2.掌握整数指数幂的运算性质.

  3.会用科学计数法表示小于1的数.

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.

  教学过程:

  一、课堂引入

  1.回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an = am+n(m,n是正整数);

  (2)幂的乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3.你还记得1纳米=10?9米,即1纳米=米吗?

  4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的.

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5.即小于1的'正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

  数学八年级上册教案 9

  一、教学目标:

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

  2、会求一组数据的极差.

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差.

  2、难点:本节课内容较容易接受,不存在难点.

  三、课堂引入:

  下表显示的是上海2001年2月下旬和2002年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法.

  经计算可以看出,对于2月下旬的这段时间而言,2001年和2002年上海地区的平均气温相等,都是12度.

  这是不是说,两个时段的`气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图.

  观察一下,它们有区别吗?说说你观察得到的结果.

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).

  四、例习题分析

  本节课在教材中没有相应的例题,教材P152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

  数学八年级上册教案 10

  一、学习目标

  1.使学生了解运用公式法分解因式的意义;

  2.使学生掌握用平方差公式分解因式

  二、重点难点

  重点:掌握运用平方差公式分解因式。

  难点:将单项式化为平方形式,再用平方差公式分解因式。

  学习方法:归纳、概括、总结。

  三、合作学习

  创设问题情境,引入新课

  在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的`形式。

  如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

  1.请看乘法公式

  左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

  利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式讲解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精讲精练

  例1、把下列各式分解因式:

  (1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;(2)2x3—8x。

  补充例题:判断下列分解因式是否正确。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、课堂练习

  教科书练习。

  六、作业

  1、教科书习题。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

  数学八年级上册教案 11

  知识技能

  1.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

  2.探究线段垂直平分线的性质。

  过程方法

  1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

  2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

  情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的.能力。

  教学重点

  1.轴对称的性质。

  2.线段垂直平分线的性质。

  教学难点体验轴对称的特征。

  教学方法和手段多媒体教学

  过程教学内容

  引入中垂线概念

  引出图形对称的性质第一张幻灯片

  上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

  幻灯片二

  1、图中的对称点有哪些?

  2、点A和A的连线与直线MN有什么样的关系?

  理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

  我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

  数学八年级上册教案 12

  一、创设情景,明确目标

  多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  多边形的定义及有关概念

  活动一:阅读教材P19。

  展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

  小组讨论:结合具体图形说出多边形的边、内角、外角?

  反思小结:多边形的定义及相关概念。

  针对训练:见《学生用书》相应部分

  多边形的对角线

  活动二:(1)十边形的对角线有35条。

  (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

  展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

  反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

  小组讨论:如何灵活运用多边形对角线条数的规律解题?

  针对训练:见《学生用书》相应部分

  正多边形的有关概念

  活动二:阅读教材P20。

  展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

  小组讨论:判断一个多边形是否是正多边形的条件?

  反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  本节学习的数学知识是:

  1、多边形、多边形的.外角,多边形的对角线。

  2、凸凹多边形的概念。

  五、达标检测,反思目标

  1、下列叙述正确的是(D)

  A、每条边都相等的多边形是正多边形

  B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

  C、每个角都相等的多边形叫正多边形

  D、每条边、每个角都相等的多边形叫正多边形

  2、小学学过的下列图形中不可能是正多边形的是(D)

  A、三角形B。正方形C。四边形D。梯形

  3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

  4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

  数学八年级上册教案 13

  教学目标:

  1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

  二、导入新课:

  1、提出问题:(书P68页的问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值。

  一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。

  也就是,在等式=a(x0)中,规定x = 。

  2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

  3、想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。

  4、例1求下列各数的算术平方根:

  (1)100;

  (2)1;

  (3);

  (4)0。0001

  三、练习

  P69练习1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的'小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

  数学八年级上册教案 14

  一、学习目标及重、难点:

  1、了解方差的定义和计算公式。

  2、理解方差概念的产生和形成的过程。

  3、会用方差计算公式来比较两组数据的波动大小。

  重点:方差产生的必要性和应用方差公式解决实际问题。

  难点:理解方差公式

  二、自主学习:

  (一)知识我先懂:

  方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。

  给力小贴士:方差越小说明这组数据越 。波动性越 。

  (二)自主检测小练习:

  1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

  2、甲、乙两组数据如下:

  甲组:10 9 11 8 12 13 10 7;

  乙组:7 8 9 10 11 12 11 12.

  分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

  三、新课讲解:

  引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  问:(1)哪种农作物的`苗长的比较高(我们可以计算它们的平均数: = )

  (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

  归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用 来表示。

  (一)例题讲解:

  例1、 小巍和小金两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

  测试次数 第1次 第2次 第3次 第4次 第5次

  小巍 13 14 13 12 13

  小金 10 13 16 14 12

  给力提示:先求平均数,在利用公式求解方差。

  (二)小试身手

  1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定

  去参加比赛。

  1、求下列数据的众数:

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

  四、课堂小结

  方差公式:

  给力提示:方差越小说明这组数据越 。波动性越 。

  每课一首诗:求方差,有公式;先平均,再求差;

  求平方,再平均;所得数,是方差。

  五、课堂检测:

  1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题

  七、学习小札记:

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

  数学八年级上册教案 15

  一、教学内容:

  本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

  本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

  重点:掌握完全平方公式,会运用公式进行简单的计算。

  难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

  三、教学目标

  (1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

  (2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

  (3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

  (4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的'学习过程中获得体验成功的喜悦,增强学习数学的自信心。

  四、学情分析与教法学法

  学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

  学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

  总结反思中获得数学知识与技能。

  教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

  五、教学过程

  (略)

  六、教学评价

  在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

  在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

  数学八年级上册教案 16

  一、教学目的

  1.使学生进一步理解自变量的取值范围和函数值的意义.

  2.使学生会用描点法画出简单函数的图象.

  二、教学重点、难点

  重点:1.理解与认识函数图象的意义.

  2.培养学生的看图、识图能力.

  难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

  三、教学过程

  复习提问

  1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

  2.结合函数y=x的图象,说明什么是函数的图象?

  3.说出下列各点所在象限或坐标轴:

  新课

  1.画函数图象的方法是描点法.其步骤:

  (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点,比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了,一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的.对应值列出表来。

  (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点。

  (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线。

  一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线)。

  2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象。

  小结

  本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

  练习

  ①选用课本练习(前一节已作:列表、描点,本节要求连线)

  ②补充题:画出函数y=5x-2的图象.

  作业

  选用课本习题.

  四、教学注意问题

  1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

  2.注意充分调动学生自己动手画图的积极性.

  3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

  数学八年级上册教案 17

  教学内容

  本节课主要介绍全等三角形的概念和性质.

  教学目标

  1.知识与技能

  领会全等三角形对应边和对应角相等的有关概念.

  2.过程与方法

  经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

  3.情感、态度与价值观

  培养观察、操作、分析能力,体会全等三角形的应用价值.

  重、难点与关键

  1.重点:会确定全等三角形的对应元素.

  2.难点:掌握找对应边、对应角的方法.

  3.关键:找对应边、对应角有下面两种方法:

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

  (2)对应边所对的角是对应角,两条对应边所夹的角是对应角

  教具准备

  四张大小一样的纸片、直尺、剪刀.

  教学方法

  采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

  一、动手操作,导入课题

  1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

  2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

  【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

  【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

  学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

  【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

  概念:能够完全重合的`两个三角形叫做全等三角形.

  【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

  【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

  【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

  【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

  【交流讨论】通过同桌交流,实验得出下面结论:

  1.任意放置时,并不一定完全重合,只有当把相同的角旋转到一起时才能完全重合.

  2.这时它们的三个顶点、三条边和三个内角分别重合了.

  3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

  数学八年级上册教案 18

  教学目标:

  知识与技能目标:

  1.掌握矩形的概念、性质和判别条件。

  2.提高对矩形的性质和判别在实际生活中的应用能力。

  过程与方法目标:

  1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。

  2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。

  情感与态度目标:

  1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。

  2.通过对矩形的探索学习,体会它的内在美和应用美。

  教学重点:

  矩形的'性质和常用判别方法的理解和掌握。

  教学难点:

  矩形的性质和常用判别方法的综合应用。

  教学方法:

  分析启发法

  教具准备:

  像框,平行四边形框架教具,多媒体课件。

  教学过程设计:

  一、情境导入:

  演示平行四边形活动框架,引入课题。

  二、讲授新课:

  1.归纳矩形的定义:

  问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)

  结论:有一个内角是直角的平行四边形是矩形。

  2.探究矩形的性质:

  (1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

  结论:矩形的四个角都是直角。

  (2)探索矩形对角线的性质:

  让学生进行如下操作后,思考以下问题:(幻灯片展示)

  在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

  ①随着∠α的变化,两条对角线的长度分别是怎样变化的?

  ②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

  ③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

  (学生操作,思考、交流、归纳。)

  结论:矩形的两条对角线相等.

  (3)议一议:(展示问题,引导学生讨论解决)

  ①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

  ②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

  (4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)

  矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

  例解:(性质的运用,渗透矩形对角线的“化归”功能)

  如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4

  厘米,求BD与AD的长。

  (引导学生分析、解答)

  探索矩形的判别条件:(由修理桌子引出)

  (5)想一想:

  对角线相等的平行四边形是怎样的四边形?为什么?

  结论:对角线相等的平行四边形是矩形.

  (理由可由师生共同分析,然后用幻灯片展示完整过程.)

  (6)归纳矩形的判别方法:(引导学生归纳)

  有一个内角是直角的平行四边形是矩形.

  对角线相等的平行四边形是矩形.

  三、课堂练习:

  四、新课小结:

  通过本节课的学习,你有什么收获?

  (师生共同从知识与思想方法两方面小结。)

  五、作业设计:P99习题4.6第1、2、3题。

  板书设计:

  1.矩形

  矩形的定义:

  矩形的性质:

  前面知识的小系统图示:

  2.矩形的判别条件:

  课后反思:

  在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

  数学八年级上册教案 19

  一、创设情景,明确目标

  多媒体展示:内角三兄弟之争

  在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分.

  三、合作探究,达成目标

  三角形的内角和

  活动一:见教材P11“探究”.

  展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

  小组讨论:有没有不同的证明方法?

  反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

  针对训练:见《学生用书》相应部分

  三角形内角和定理的应用

  活动二:见教材P12例1

  展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

  小组讨论:三角形的内角和在解题时,如何灵活应用?

  反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  1.本节学习的数学知识是:三角形的内角和是180°.

  2.三角形内角和定理的证明思路是什么?

  3.数学思想是转化、数形结合.

  《三角形综合应用》精讲精练

  1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的.三角形的个数是( )

  A.1个 B.2个 C.3个 D.4个

  2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五种说法:

  ①三角形的三个内角中至少有两个锐角;

  ②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

  《11.2与三角形有关的角》同步测试

  4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

  (2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

  (3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

  数学八年级上册教案 20

  教学目标

  (一)教学知识点

  1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

  2.理解积的乘方运算法则,能解决一些实际问题。

  (二)能力训练要求

  1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

  2.学习积的乘方的运算法则,提高解决问题的能力。

  (三)情感与价值观要求

  在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。

  教学重点

  积的乘方运算法则及其应用。

  教学难点

  幂的运算法则的灵活运用。

  教学方法

  自学─引导相结合的方法。

  同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

  教具准备

  投影片.

  教学过程

  Ⅰ.提出问题,创设情境

  [师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

  [生]它的'体积应是V=(1.1×103)3cm3。

  [师]这个结果是幂的乘方形式吗?

  [生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

  [师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。

  Ⅱ.导入新课

  老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

  出示投影片

  1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

  (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

  (2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整数)

  2.把你发现的规律用文字语言表述,再用符号语言表达。

  3.解决前面提到的正方体体积计算问题。

  4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

  5.完成课本P170例3。

【数学八年级上册教案】相关文章:

数学八年级上册教案03-02

初中数学八年级上册教案02-06

八年级上册数学教案01-13

八年级数学上册教案02-27

数学八年级上册教案15篇03-02

数学八年级上册教案(15篇)03-02

八年级上册数学优秀教案01-23

数学上册教案01-15

初中数学八年级上册教案精选5篇06-05