高二数学教案

时间:2023-02-10 13:49:00 数学教案 我要投稿

人教版高二数学教案

  作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?以下是小编为大家整理的人教版高二数学教案,仅供参考,大家一起来看看吧。

人教版高二数学教案

人教版高二数学教案1

  一、学情分析

  本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

  二、考纲要求

  1.会用坐标表示平面向量的加法、减法与数乘运算.

  2.理解用坐标表示的平面向量共线的条件.

  3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

  4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

  三、教学过程

  (一)知识梳理:

  1.向量坐标的求法

  (1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

  (2)设A(x1,y1),B(x2,y2),则

  =xxxxxxxxxxxxxxxx_

  ||=xxxxxxxxxxxxxx_

  (二)平面向量坐标运算

  1.向量加法、减法、数乘向量

  设=(x1,y1),=(x2,y2),则

  +=-=λ=.

  2.向量平行的坐标表示

  设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.

  (三)核心考点·习题演练

  考点1.平面向量的坐标运算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;

  (2)求满足=m+n的实数m,n;

  练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

  (m,n∈R),则m-n的值为

  考点2平面向量共线的坐标表示

  例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)

  若(+k)∥(2-),求实数k的值;

  练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=(  )

  思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

  方法总结:

  1.向量共线的两种表示形式

  设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

  2.两向量共线的充要条件的作用

  判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

  考点3平面向量数量积的坐标运算

  例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

  则的值为;的值为.

  【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

  练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于(  )

  【思考】两非零向量⊥的充要条件:·=0?     .

  解题心得:

  (1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

  (2)解决涉及几何图形的`向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

  (3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.

  考点4:平面向量模的坐标表示

  例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为(  )

  A.6B.7C.8D.9

  练:(20xx,上海,12)

  在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?

  解题心得:

  求向量的模的方法:

  (1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

  (2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

  五、课后作业(课后习题1、2题)

人教版高二数学教案2

  教学目标

  1.掌握平面向量的数量积及其几何意义;

  2.掌握平面向量数量积的重要性质及运算律;

  3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

  4.掌握向量垂直的'条件.

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学工具

  投影仪

  教学过程

  复习引入:

  向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

  课堂小结

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  课后作业

  P107习题2.4A组2、7题

  课后小结

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

【高二数学教案】相关文章:

高二数学教案01-05

人教版高二数学教案范文09-29

高二数学教案14篇06-12

高中高二数学教案02-25

高中高二数学教案3篇11-02

高中高二数学教案(3篇)11-03

一个数乘以小数高二数学教案02-23

我高二了高二作文04-14

数学教案-数学教案09-29