六年级数学圆的面积教案(通用18篇)
作为一名无私奉献的老师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?以下是小编为大家整理的六年级数学圆的面积教案,仅供参考,大家一起来看看吧。
六年级数学圆的面积教案 1
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:
认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打√,错的打x。
(1)计算直径为10毫米的圆的面积的.列式是3.14()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
(1)半圆的周长是多少厘米?
(2)半圆的面积:
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m)
(3)比较:长方形面积:61.6m正方形面积:61.6225m圆面积:78.5m围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。
(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
六年级数学圆的面积教案 2
【教学内容】
北师大版小学数学第十一册第一单元P16——18圆的面积
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。
【教学重点】
能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
【教具准备】
投影仪,CAI课件,等分好的圆形纸片。
【学具准备】
等分好的圆形纸片。
【教学过程】
一、 创设情境。提出问题
(投影出示P16中草坪喷水插图)
师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?
学生观察并讨论,然后指名回答。
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;
生3:我补充一点,这个圆形的中心就是喷头所在的地方。
师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)
2、用数方格的方法求圆面积大小
①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
生1、我是根据圆里面的正方形来估计的,外面方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的'面积大约在50--100平方米之间;
生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;
生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2,而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?那么圆形的面积可由什么图形面积得来呢。
学生回答,教师订正。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。
师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?
生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。
(学生在说的同时教师注意板书)
师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?
生:等分为32份的更接近长方形。
师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?
生:等分的份数越多,就越接近长方形。
师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。
生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。
师:用字母怎么表示圆面积公式呢?
生:S=RR
生:还可以写作S=R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
(学生独立解答,知名回答)
四、应用圆面积公式解决实际问题
1、P18,NO1
学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。
2、P18,NO2
让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。
五、小结
师:谁能用自己的话说说圆面积的推导过程。
六年级数学圆的面积教案 3
教学要求
1、使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。
2、培养学生运用转化的思想解决问题的能力。
重点难点
重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。
难点:理解圆的面积公式的推导过程。
教具学具
实物投影,各种图形的纸片。
教学过程
一、导入
1、我们学过哪些平面图形的面积公式?
2、长方形、平行四边形和三角形的面积公式分别是什么?
3、平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。
二、教学实施
1、明确圆的'面积的概念。
(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?
学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。
(2)圆的大小是由什么决定的?
(3)展示由“曲”变“直”的渐变图。
引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。
2、学生动手操作,推导圆的面积公式。
为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,
(1)指导学生动手摆学具,并思考几个问题:
你摆的是什么图形?
你摆的图形的面积与圆的面积有什么关系?
所摆图形的各部分相当于圆的什么?
你如何推导出圆的面积?
(2)学生动手摆学具,然后发言。
拼成长方形:
老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。
出示教材第67页上面的图加以说明。
拼成的近似长方形的长和宽与圆的各部分有什么关系?
从图中可以看出圆的半径是r,长方形的长是πr,宽是r。
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。
3.利用公式计算圆的面积。
出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?
指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。
板书:20÷2=10(m)
3.14×102
=3.14×100
=314(m)
314×8=2512(元)
答:铺满草坪需要2512元。
老师强调指出:列出算式后,要先算平方,再与π相乘。
三课堂作业新设计
1.直接写出得数。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圆的面积。
3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?
4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?
四思维训练
计算阴影部分的面积。(单位:分米)参考答案
课堂作业新设计
1.491625364964811000.040.490.81
2.12.56平方分米28.26平方分米1256平方厘米28.26平方米
3.28.26平方分米
4.1.1304平方米
思维训练
3.44平方分米
板书设计
圆的面积
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m)
314×8=2512(元)
答:铺满草坪需要2512元。
备课参考教材与学情分析
本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
课堂设计说明
1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。
2.教学时,强调知识迁移的过程。
平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。
3.组织学生观察猜想。
先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。
六年级数学圆的面积教案 4
教学内容:
圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1、前面我们学习了圆、圆的周长。如果圆的.半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2、课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3、件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1、回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2、推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2 师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1、求下面各圆的面积,只列式不计算。(CAI课件出示)
2、测量一个圆形实物的直径,计算它的周长及面积。
3、课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1、第97页的第3题和第4题。
2. 、找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积= 长× 宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
六年级数学圆的面积教案 5
【教学目的】
1、通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
【重点】
圆面积计算公式以及推导。
【教学过程】
一、复习并引入课题。
1、口算:2π 9.42÷π 12.56÷π
2、已知圆的半径是2.5分米,它的周长是多少?
3、一个长方形的长是6.2米,宽是4米,它的面积是多少?
4、说出平行四边形的面积公式是怎样推导出来的?
5、出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?
课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
二、新课讲授
1、圆的面积的含义。
问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2、圆的面积公式的推导。
问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)
问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)
问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)
教师拿出圆的.面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
强调:如果分的等份越多所拼的图形就越接近长方形。
问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)
引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?
学生独立完成圆面积公式的推导:
总结:我们用S表示圆的面积,那么圆面积的大小就是:
再次强调:
(1)拼成的图形近似于什么图形?
(2)原来圆的面积与这个长方形的面积是否相等?
(3)长方形的长相当于圆的哪部分的长?
(4)长方形的宽是圆的哪部分?
(5)用S表示圆的面积,那么圆的面积可以写成:S=πr2
3、圆面积公式的应用。
师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?
学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?
(学生独立完成,教师巡视,对有困难的学生给予辅导。)
教师板演计算过程。
出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?
问题:你能利用内圆好外圆的面积求出环形的面积吗?
学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)
三、巩固练习。
1、根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。
(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
(2)强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。
四、课堂小结
总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!
另外,我们在前面也学习了如何求圆的周长,需要注意的是:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。
(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。
六年级数学圆的面积教案 6
教学内容
教科书第94页圆面积公式的推导,第95页的例3,练习二十四的第1~5题、
教学目的
使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积、
教具、学具准备
教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具、
教学过程
一、复习
1、教师:什么叫做面积?长方形的面积计算公式是什么?
2、教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程、想一想这些推导过程有什么共同点?
二、新课
1、教学圆面积的含义及计算公式、
教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小、
教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论、最后教师归纳出:圆所围平面的大小叫做圆的面积、
教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式、
教师出示把圆平均分成16份的教具,让学生想一想,能不能把这个圆拼成一个近似什么形状的图形、如果学生回答有困难,可提示学生看教科书第10页上面的图,并让学生拿出学具,试着拼一拼,然后让拼得正确的同学到前面演示一下拼的过程,再让不会拼的同学拼一遍、
然后教师直接拿出把圆平均分成32份的教具拼成一个近似长方形,提问:“我们刚才把这个圆拼成了近似什么形状的图形?”(长方形、)请同学们观察一下,把这个圆平均分的份数越多,这个图形越怎么样?(引导学生看出平均分的份数越多,这个图形越近似于长方形、)拼成的近似长方形与原来的`圆相比,什么变了?什么没变?(使学生看出形状变了,但面积没有变,圆的面积等于近似长方形的面积、)
教师在拼成的近似长方形的右边画一个长方形,指出:如果平均分的份数越多,拼成的近似长方形就越接近长方形、提问:“请同学们观察一下,这个长方形的长与宽和原来的圆的周长与半径之间有什么关系?”使学生在教师的引导下看出:这个近似长方形的长相当于圆的周长的一半,如果圆的半径是r,即==πr;长方形的宽就是圆的半径、接着提问:这个长方形的面积是多少?这个圆的面积呢?
学生说,教师板书:圆的面积=πr×r=πr2
教师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2、
教师:我们现在已经知道了圆面积的计算公式,我们现在只要知道圆的什么就可以求出圆的面积?然后再让学生说一说圆面积计算公式的推导过程、
2、教学例3、
教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以、
然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方、教师要强调指出:列出算式后,要先算平方,再与π相乘、最后小结一下解题过程、
三、课堂练习
做练习二十四的第1~5题、
1、第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称、订正时了解学生还存在什么问题,及时纠正、
2、第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题、
3、第3题,让学生自己做,集体订正、
4、第4题,指名读题,让学生说一说这道题与第3题有什么不同的地方,能不能直接计算、使学生明确要先算出半径,再计算、
5、第5题,让学生读题,看着右面的示意图说一说题意,再让学生做,集体订正、
六年级数学圆的面积教案 7
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。
教学重点,难点:
掌握圆柱侧面积和表面积的计算方法。
运用所学的知识解决简单的实际问题。
教学过程:
一、引入新课:
前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?
1.圆柱是由平面和曲面围成的立体图形。
2.圆柱各部分的名称(两个底面,侧面,高)。
3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。
二、探究新知:
以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)
同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?
教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。
板书:(圆柱的表面积=圆柱的'侧面积+两个底面的面积)
1.圆柱的侧面积
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习二第5题
学生审题,回答下面的问题:
这两道题分别已知什么,求什么?
小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.尝试练习。
(1)求下面各圆柱的侧面积。
①底面周长2.5分米,高0.6分米。
②底面直径8厘米,高12厘米。
(2)求下面各圆柱的表面积。
①底面积是40平方厘米,侧面积是25平方厘米。
②底面半径是2分米,高是5分米。
5.小结:
在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)
三、巩固练习。
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习二第6,7题。
四、课后思考。
同学们想一想是不是所有的圆柱在计算表面积时都可以用
公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?
六年级数学圆的面积教案 8
设计说明
1、利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2、重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的'面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1、课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2、课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m)]
3、探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
六年级数学圆的面积教案 9
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问
(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2、操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3、小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的'侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)练习
求圆柱的侧面积(只列式不计算)
1、底面周长是1.6米,高是0.7米
2、底面直径是2分米,高是45分米
3、底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六)巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
六年级数学圆的面积教案 10
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:
组合图形的认识及面积计算、图形分析。
教具学具准备:
多媒体课件、各种基本图形纸片。
教学设计:
创设情境,认识圆环
1、师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2、同学们,你们从图中发现了什么?(它们都是环形的)
3、教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4、导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
探索交流,解决问题
1、画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的'圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2、探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3、课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3.14×62
=3.14×36
=113.04(cm)
内圆的面积:πr2=3.14×22
=3.14×4
=12.56(cm)
圆环的面积:πR2-πr2=113.04-12.56
=100.48(cm)
解法二
π×(R2-r2)=3.14×(62-22)=100.48(cm)
答:圆环的面积是100.48cm。
(4)比较两种算法的不同。
(5)小结:圆环的.面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1、完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2、一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3、已知阴影部分的面积是75cm,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm),圆环的面积=π(R2-r2)=3。14×75=235。5(cm)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
布置作业,巩固应用
1、完成教材72页8题。
2、找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
六年级数学圆的面积教案 11
一、教学目标
【知识与技能】
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
【过程与方法】
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
【情感、态度与价值观】
感受数学与生活的联系,激发学习兴趣。
二、教学重难点
【教学重点】
圆的面积计算公式。
【教学难点】
圆的面积计算公式的推导过程。
三、教学过程
(一)导入新课
创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
(二)讲解新知
提出问题:之前的图形面积公式是如何推导的?
学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。
追问:能否将圆的图形转换成之前的图形?
组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。
预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;
预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;
预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。
老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。
学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。
进一步追问:观察原来的圆和转化后的'这个近似长方形,发现他们之前有哪些等量关系?
预设1:长方形的.面积等于圆的面积;
预设2:长方形的长近似等于圆周长的一半;
预设3:长方形的宽近似等于圆的半径。
六年级数学圆的面积教案 12
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一、复习旧知。
1、计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2、求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3、讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二、新课导入。
1、教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2、学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3、反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4、教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的`底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5、说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三、新课教学。
1、例2一个圆柱的`高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2、学生尝试练习,教师巡回检查、指导。
3、反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4、学生质疑。
5、教师强调答题过程的清楚完整和计算的正确。
6、教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四、反馈练习:试一试。
1、学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2、学生交流练习结果(注意计算结果的要求)。
3、教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五、拓展练习
1、教师发给学生教具,学生分组进行数据测量。
2、学生自行计算所需的材料。
3、计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六、巩固练习。
1、计算下面图形的表面积(单位:厘米)(略)
2、计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3、一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4、一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
六年级数学圆的面积教案 13
教学目标:
1、理解圆柱表面积的含义。
2、掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。
3、能灵活运用求表面积的有关知识解决一些简单的实际问题。
教学重点:
理解求圆柱的表面积的计算方法并能正确计算。
教学难点:
灵活运用表面积的有关知识解决实际问题。
教学方法:
探索发现,归纳总结,实际应用
学法指导:
小组合作,探究发现
教学准备:
课件
圆柱模型
教学过程:
一、激情导思(5分)
1、填空
(1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。
(2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。
(3)圆柱的侧面积=
2、求下面各圆柱的'侧面积。(只列式,不计算)
①c=9.42厘米,h=5厘米。
②d=8米,h=3米。
③r=2分米,h=6分米。
二、探究新知(15分)
小组交流:
1、圆柱的表面积怎么计算?
2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?
3、归纳总结:
(1)s表面积=s侧面积+2s底面积
(2)烟囱表面积=侧面积
(3)水桶表面积=侧面积+一个底面积
(4)油桶表面积=侧面积+两个底面积
4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?
(1)学生独立尝试解决
(2)全班交流:
油桶的侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
三、课内练习:
1、数学书33页第2题求表面积并填表
2、计算下现各圆柱的表面积。(图中单位:厘米)
四、拓展应用
3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?
4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
5、数学书33页第6题
四:总结:
1、圆柱表面积的`有关知识,在实际应用时要注意什么呢?
应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。
五、布置作业(8分)
数学书33页第3、4、5题
板书设计: 圆柱的表面积
例2:油桶的侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
六年级数学圆的面积教案 14
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重、难点:
圆面积公式的推导与运用。
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片
教学过程:
一、设疑导入,激发动机
1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)
3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
二、动手操作,探索新知
1.猜想、引导,确定方法
师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?
(学生可能会想到长方形、平行四边形、三角形、梯形等。)
师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?
(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)
2.动手操作,尝试探究
师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)
师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)
3.课件演示,突破难点
师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:
(1)圆与有近似的长方形有什么关系?
(2)把圆16等份和32等份后,拼成的图形有什么区别?
(3)如果等分份数仅需增加,结果会怎样?
师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
4.观察比较,导出公式
师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?
学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的`半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2
(可能有的'同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)
5.尝试运用
出示例3,读题列式,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
2.完成第116页做一做的第1题。
3.看书质疑。
三、运用新知,解决问题
1.求下面各圆的面积,只列式不计算。
直径50分米
2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?
3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、课堂作业
第118页的第3题和第4题。
六年级数学圆的面积教案 15
学材分析
教学重点:
面积计算公式的正确运用。
教学难点:
面积公式的推导过程。
学情分析
学生对圆面积公式的推导过程理解有一定的难度。
学习目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.会用圆面积的计算公式,正确计算圆的面积。
导学策略
导练法、迁移法、例证法
教学准备
圆的面积模型、圆规、投影仪、投影片
一、引入
1.什么叫做圆面积?
2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?
3.引出课题。
二、推导
1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?
2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。
3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。
4.分析推导。师生共同拿出剪好的`图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?
板书:图形面积=等腰三角形面积n=底高2n=Cr2n
=2rn
圆的面积=r2
边板书边提问:等腰三角形的底是多少?(C)等腰三角形的'高相当于圆的什么?(半径r)
5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。
三、巩固
试一试。
四、总结
五、作业
学生口答
师生共同操作
师生共同操作
教学反思
已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。
六年级数学圆的面积教案 16
教学目的:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:
圆面积公式的推导。
教学难点:
弄清圆与转化后的近似图形之间的关系。
学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。
教具:课件。
教学过程:
一、谈话揭题:
出示图:
你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)
二、新课教学:
1、猜测:
现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?
2、验证:
(1)现在我们都认为圆的面积是r的.平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)
(2)反馈:(三分钟后,低到高)
a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?
b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。
c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)
(3)操作:
你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)
3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)
(1)学生汇报。
(2)有没有疑问?
拼成的长方形是真正的长方形吗?为什么?(边是曲线)
如果把一个圆等分成32份,拼成的.长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)
(3)板书:
那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。
(4)还有补充吗?
小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)
4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)
三、巩固练习:
1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)
2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。
四、机动练习:
教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?
五、全课小结:
今天这节课给你印象最深刻的一点是什么?
六年级数学圆的面积教案 17
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1、教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2、交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3、教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的'面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4、教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转X器?
(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5、教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1、完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2、完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3、完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4、完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5、作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积
六年级数学圆的面积教案 18
教学目标:
1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点:
渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学过程
一、尝试转化,推导公式
1、确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2、尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
3、探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4、推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的.长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的.回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题
1、教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2、完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。
订正。
3、教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
交流,订正。
三、课堂作业。
教材第70页第2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
课后作业:完成数练第31页。
【六年级数学圆的面积教案】相关文章:
数学圆的面积教案02-14
小学数学圆的面积的教案04-18
圆的面积的数学教案01-21
小学数学《圆的面积》教案02-23
数学圆的面积教案15篇02-14
《圆的面积》教案12-17
圆的面积教案05-08
圆的面积教案01-02
小学数学圆的面积教案(精选11篇)06-15
小学数学《圆的面积》教案14篇02-24