八年级数学教案【热】
作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?下面是小编精心整理的八年级数学教案,仅供参考,希望能够帮助到大家。
八年级数学教案1
一、内容和内容解析
1.内容
三角形中相关元素的概念、按边分类及三角形的三边关系.
2.内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.
本节课的教学重点:三角形中的相关概念和三角形三边关系.
本节课的教学难点:三角形的三边关系.
二、目标和目标解析
1.教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.
(2)理解并且灵活应用三角形三边关系.
2.教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素.
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.
四、教学过程设计
1.创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.
2.抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.
补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.
3.概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.
1.以AB为一边的三角形有哪些?
2.以∠D为一个内角的`三角形有哪些?
3.以E为一个顶点的三角形有哪些?
4.说出ΔBCD的三个角.
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.
4.拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.
八年级数学教案2
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的'基础上灵活地将分式变形。
三、练习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
八年级数学教案3
八年级下数学教案-变量与函数(2)
一、教学目的
1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点
重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程
复习提问
1.函数的定义是什么?函数概念包含哪三个方面的内容?
2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的条件是什么?
(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)
4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。
新课
1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:
(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:
(1)例3中的4个小题归纳起来仍是三类题型。
(2)求函数值的问题实际是求代数式值的`问题。
补充例题
求下列函数当x=3时的函数值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小结
1.解析法的意义:用数学式子表示函数的方法叫解析法。
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。
练习:P94中1,2,3。
作业:P95~P96中A组3,4,5,6,7。B组1,2。
四、教学注意问题
1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。
2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。
3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。
八年级数学教案4
一、教学目标
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:
首先应交待清楚中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
三、例习题的意图分析
1、教材P143的例4的意图
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P145例5的意图
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)
(3)、例5也反映了众数是数据代表的一种。
四、课堂引入
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析
教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹1.2匹1.5匹2匹
3月12台20台8台4台
4月16台30台14台8台
根据表格回答问题:
商店出售的`各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。
七、课后练习
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
温度(℃) -8 -1 7 15 21 24 30
天数3 5 5 7 6 2 2
请你根据上述数据回答问题:
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天
八年级数学教案5
【教学目标】
知识目标:
解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。
能力目标:
(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;
(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。
情感目标:
充分调动学生学习的积极性、主动性
【教学重点】
单项式与多项式的乘法运算
【教学难点】
推测整式乘法的运算法则。
【教学过程】
一、复习引入
通过对已学知识的复习引入课题(学生作答)
1.请说出单项式与单项式相乘的'法则:
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。
(系数×系数)×(同字母幂相乘)×单独的幂
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1
问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?
这便是我们今天要研究的问题。
二、新知探究
已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)
现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc
上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)
结论单项式与多项式相乘的运算法则:
用单项式分别去乘多项式的每一项,再把所得的积相加。
用字母表示为:m(a+b+c)=ma+mb+mc
运算思路:单×多
转化
分配律
单×单
三、例题讲解
例计算:(1)(-2a2)· (3ab2– 5ab3)
(2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年级数学教案6
数据的波动
教学目标:
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等
教学过程:
一、创设情境
1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的`平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2
设有一组数据:x1, x2, x3,,xn,其平均数为
则s2= ,
而s= 称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做
你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?
(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)
五、巩固练习:课本第172页随堂练习
六、课堂小结:
1、怎样刻画一组数据的离散程度?
2、怎样求方差和标准差?
七、布置作业:习题5.5第1、2题。
八年级数学教案7
一、教材分析
1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。
2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:
(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析
1、知识目标:掌握最短路径概念、能够求解最短路径。
2、能力目标:
(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。
(2)通过旅游景点线路选择问题的解决,培养学生的'独立思考、分析问题、解决问题的能力。
3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析
课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。
四、学法指导
1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析
(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。
教学方法及注意事项:
(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。
(2)提示学生“温故而知新”,养成良好的学习习惯。
(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:
(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。
(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。
(三)讲授新课(25~30分钟)
1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。
(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:
①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。
②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。
③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。
④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。
教学方法及注意事项:
①启发式教学,如何实现按路径长度递增产生最短路径?
②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。
(四)课堂小结(3~5分钟)
1、明确本节课重点
2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业
1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。
六、教学特色
以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。
八年级数学教案8
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:对于平均数、中位数、众数在不同情境中的应用。
教学方法:归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的.权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
每人销售件数 1800 510 250 210 150 120
人数 113532
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。
例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:复习题B组、C组(选做)
八年级数学教案9
教学目标:
1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
2、能力目标:
①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。
②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。
3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。
重点与难点:
重点:图形之间的变换关系(轴对称、平移、旋转及其组合);
难点:综合利用各种变换关系观察图形的形成。
疑点:基本图案不同,形成方式不同。
教学方法:
新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。
教学过程设计:
1、情境导入
播放自制图形形成的影片,如图351。
2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?
问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:
(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;
(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;
(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;
(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。
(学生可能还有其他不同描述,教师应予以肯定)
3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。
4、利用想一想你能将图352的`左图,通过平移或旋转得到右图吗?
学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。
5、例1、怎样将图353中的甲图变成乙图案?
通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)
例2、怎样将图354中右边的图案变成左边的图案?
留给学生充足的时间讨论交流。
(师):哪位同学有好好方法,请告诉大家!
(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。
(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。
明确可以通过不同的办法达到同样的效果,激励学生动手动脑。
5、学习小结
(1)内容总结
两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)
(2)方法归纳
①了解并知道图案变化的一般方法。
②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。
6、目标检测
图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?
延伸拓展:
1、链接生活
链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)
链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)
实践探索:
①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)
②巩固练习课本74页中的习题3.6。
板书设计:
3.5它们是怎样变过来的。
轴对称、平移、旋转的性质例题;
图形之间的变换关系;
八年级数学教案10
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的'符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级数学教案11
一、内容和内容解析
1.内容
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的.延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.
二、目标和目标解析
1.教学目标
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2.教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
八年级数学教案12
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点:
平方差公式的`推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________、
1、下列计算对不对?若不对,请在横线上写出正确结果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、计算:50×49=_________、
应用探究
1、几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?
2、用平方差公式计算
(1)103×93 (2)59、8×60、2
拓展提高
1、阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2、仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数、
堂堂清
一、选择题
1、下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
八年级数学教案13
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移
2.平移的性质:
⑴经过平移,对应点所连的线段平行且相等;
⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;
⑵需要平移的方向;
⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的'方法:
⑴找出关键点;⑵作出这些点平移后的对应点;
⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转
2.旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。
八年级数学教案14
课题:一元二次方程实数根错例剖析课
【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
【课前练习】
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
【典型例题】
例1 下列方程中两实数根之和为2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
错答: B
正解: C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
错解 :B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
【练习】
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k< 时,方程有两个不相等的实数根。
(2)存在。
如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。
∴当k= 时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。
(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的.方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
【小结】
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
【布置作业】
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。
求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
八年级数学教案15
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的'一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的
注意:(a-b)2=(b-a)2
六、作业
1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
【八年级数学教案】相关文章:
有关八年级数学教案八年级数学教案全套10-03
八年级数学教案12-04
【推荐】八年级数学教案01-31
【热门】八年级数学教案01-31
【荐】八年级数学教案01-17
八年级数学教案【热门】01-18
【热】八年级数学教案01-18
八年级数学教案【荐】02-01
八年级数学教案【精】02-01