六年级数学上册全册教案

时间:2023-01-19 15:18:28 数学教案 我要投稿

六年级数学上册全册教案8篇

  作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案是教学活动的总的组织纲领和行动方案。那么应当如何写教案呢?下面是小编为大家收集的六年级数学上册全册教案,希望能够帮助到大家。

六年级数学上册全册教案8篇

六年级数学上册全册教案1

  第一单元 方 程

  教学内容:P7“回顾与整理”、“练习与应用”第1—4题

  教学目标:

  1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

  2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

  教学资源:小黑板

  教学过程:

  一、揭示课题

  本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

  二、回顾与整理

  1、出示小组讨论题:

  (1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

  (2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

  2、让学生围绕这两个问题进行独立思考。

  3、把各自思考的情况在小小组内进行交流。

  4、全班交流。

  讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。 讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

  三、练习与应用

  1、解方程

  180+6x=330 27x+31x=145 x-0.8x=10

  2.2x-1=10 15x÷2=60 4x+x=3.15

  (1)让学生独立完成,指名板演。

  (2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

  2、解决实际问题

  (1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

  ① 武汉长江大桥铁路桥长多少米?

  ② 武汉长江大桥公路桥长多少米?

  ** 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

  武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

  武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

  ** 问:在列方程时应该怎样表示题中的两个未知数量?

  (2)练习与应用第3题

  ** 先让学生看图后说说了解到了哪些信息。

  ** 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

  ** 问:你能说说题中数量之间的相等关系吗?

  (学生如有困难,教师可以画线段图帮助学生理清数量关系)

  随机板书:

  小树原有的高度+6个月长的'高度=小树现在的高度

  (3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

  ** 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

  ** 再让学生独立解答,指名板演。

  ** 交流时让学生结合所列的方程说说自己的思考过程。

  三、总结: 通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

  四、作业: P7“练习与应用”第2、3题。

六年级数学上册全册教案2

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2、会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3、引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4、借助实物演示,培养学生抽象、概括的思维能力。

  教具:圆柱的体积公式演示教具,多媒体课件

  教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  2、创设问题情景。(课件显示)

  如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)

  二、新课教学:

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  1、探究推导圆柱的.体积计算公式。

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

  讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)

  要用这个公式计算圆柱的体积必须知道什么条件?

  填表:请同学看屏幕回答下面问题:

  底面积(㎡)高(m)圆柱体积(m3)

  6 3

  0、5  8

  5 2

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)

  例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)

  解:d=6dm,h=7dm、r=3dm

  S底=πr2=3、14×32 =3、14×9 =28、26(dm2)

  V =S底h =28、26×7 =197、82198dm3答:油桶的容积约是198立方分

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  三、巩固反馈

  1、求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中)圆柱形水杯的底面直径是10cm,高是15cm、已知水杯中水的体积是整个水杯体积的2/3计算水杯中水的体积?

六年级数学上册全册教案3

  第一单元长方体和正方体

  一、教学目标:

  1、使学生通过观察、操作等活动认识长方体、正方体及其展开图,知道长方体和正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的基本特征。

  2、使学生通过动手实验和对具体实例的观察,了解体积(容积)的意义及其常用的计量单位,初步具有1立方米、1立方分米、1立方厘米实际大小的观念,会进行相邻体积单位的换算。

  3、使学生在具体情境中,经历操作、猜想、验证、讨论、归纳等数学活动过程,探索并掌握长方体和正方体的表面积以及体积的计算方法,能解决与表面积和体积计算相关的一些简单实际问题。

  4、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  5、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  二、教学重点:

  通过观察、操作等活动认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的基本特征以及表面积、体积的计算方法,能解决与表面积和体积计算相关的一些简单实际问题。

  三、教学难点:

  在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。初步具有1立方米、1立方分米、1立方厘米实际大小的观念,探索并掌握长方体和正方体的表面积以及体积的计算方法。

  四、课时安排:

  14课时

  第1课时:长方体和正方体和正方体的认识(1)

  教学内容:P1、2例1、例2和“练一练”,练习一第1-4题。

  教学目标:

  1.通过看一看、量一量、比一比来了解长方体和正方体的点、线、面的特

  征,认识长方体的长、宽、高及正方体的棱,理解长方体和正方体的关系。

  2.培养学生观察、动手的能力及归纳的能力。

  教学重点:认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。

  教学难点:长方体和正方体的特征。

  课前准备:长方体和正方体的教具和学具。

  课时安排:1课时

  教学过程

  一、认识长方体的特征

  1.教学例1

  (1)我们生活中,哪些物体的形状是长方体?

  学生交流。

  (2)教师出示长方体教具

  长方体有几个面?分别是哪几个面?

  每个人在自己的座位上最多能看到几个面?

  学生交流自己所看到的结果。

  教师指出:因为我们最多只能看见它的三个面,所以在画长方体的时候一般画三个面。

  教师指导学生画长方体的立体图,并介绍它的棱与顶点,学生和教师一起操作。

  长方体有几条棱和几个顶点?它的面和棱各有什么特征?

  每个学生通过看一看、量一量、比一比去认识一下,并在小组里交流,然后全班交流。

  教师根据学生的交流情况及时板书。

  顶点:8个

  棱:12条,分三组,每组的长度相等。

  面:6个,相对面的形状完全一样。

  学生对照自己的教具再说说长方体的点、线、面的特征。

  教师进一步介绍学生认识长、宽、高并板在图中板书。

  2.完成相应的练一练

  3.完成练习三的第1题

  学生直接在小组里交流。

  二、认识正方体的特征

  1.教学例2

  (1)出示正方体的教具,问:正方体有几个面、几条棱和几个顶点它们的面和棱各有什么特征?

  让学生模仿例1的学习方法,看一看、量一量、比一比,去研究一下正方体的特征。

  (2)交流学习的结果,教师根据学生的汇报板书。

  (3)比较长、正方体的特征的异同

  学生根据板书,结合立体图形,小组讨论交流。

  汇报讨论的结果,教师用集合图表示它们的关系。

  2.完成相应的练一练。

  三、巩固练习

  1.完成练习一的第2题

  指名学生口答,集体评讲。

  2.完成练习一的第3题

  (1)学生观察后判断哪个是长方体?哪个是正方体?

  (2)学生直接口答。

  (3)重点说说其余的几个面是否完全相同?

  3.完成练习一的第4题

  让学生先分别指出它们的长、宽、高各是哪条线段,然后说

  说各是多少?

  四、课堂总结

  五、布置作业

  完成练习一的第4题。

  教学反思

  第2课时:长方体和正方体的认识(2)

  教学内容:P3例3、“试一试”和“练一练”,练习一第5-9题。

  教学目标:

  1.通过动手操作进一步认识长方体和正方体的特征,会根据所给的长方形

  的特征判断它们能否组成长方体或正方体。

  2.培养学生动手操作能力和立体观念。

  教学重点:认识长方体的侧面展开图。

  教学难点:认识长方体的侧面展开图。

  课前准备:剪刀。

  课时安排:1课时

  教学过程

  一、复习引入

  谈话:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  指名说说,全班交流补充。

  二、探究新知

  (1)除了同学们说的这些,长方体和正方体还有什么特征呢,这节课我们就继续来进行学习。

  出示正方体纸盒:

  你能够沿着这个正方体的棱把这个正方体纸盒剪开吗?

  要求:剪的时候要沿着棱剪,并且各个面要互相联在一起。

  学生尝试操作。

  小组里交流。

  (2)这个长方体纸盒你也能够沿着棱把它剪开吗?

  学生独立操作。

  看看长方体的展开图,你有什么发现?引导学生观察交流。

  追问:你能从展开图中找到3组相对的面吗?

  (3)完成练一练第1题

  标注完后引导学生具体说说思考的过程。

  (4)完成练一练第2题

  先引导学生通过想象进行判断,在此基础上再动手操作进行验证。

  三、巩固练习

  1.完成练习一第6题

  学生小组交流,独立操作验证。

  2.完成练习一第7题

  学生独立完成,全班交流,指名说说自己的思考过程。

  3.学有余力时可完成思考题

  启发学生思考:要围成一个长方体或正方体需要几张硬纸片,这几张硬纸片的形状、大小有什么联系?

  让学生通过操作逐步掌握其中的规律。

  四、全课总结

  通过这节课的学习你有哪些收获?你认为今天学习的内容什么是重点?

  五、作业

  1.练习一第5、8、9题。

  2.自己动手制作一个长方体纸盒。

  教学反思

  第3课时:长方体和正方体的表面积(1)

  教学内容:P6例4、“试一试”和“练一练”,练习二第1-4题。

  教学目标:

  1.理解表面积的含义,能正确计算6个面完整的长方体和正方体的表面积。

  2.培养学生用不同方法解决问题的能力。

  教学重点:理解并掌握长方体和正方体的表面积的计算方法。

  教学难点:能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  课前准备:长方体教具

  课时安排:1课时

  教学过程

  一、复习准备

  谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。

  出示长方体和正方体纸盒。

  提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?

  二、探究新知

  1.探究长方体表面积的计算方法。

  (1)出示例6:如果告诉你这个长方体纸盒的长宽高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  在交流中明确:只要算出这个长方体六个面的面积之和就可以了。

  (2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这六个面的面积之和?

  (3)学生独立列式,指名汇报,师根据学生回答进行板书。

  (4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)

  (5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。

  2.探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少需要多少硬纸板的问题,如果纸盒是正方形的你还会解决同样的问题吗?

  (2)学生独立尝试解答。

  (3)组织交流反馈,提醒学生根据正方体的特征进行思考。

  3.揭示表面积的含义

  我们刚才在求长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。

  三、应用拓展

  1.做“练一练”

  先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。

  2.做练习二第1题

  让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。

  3.做练习二第2题

  让学生独立依次完成两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题。

  四、全课小结

  通过今天的学习你有什么收获?什么是长方体或正方体的表面积?可以怎样计算长方体或正方体的表面积?长方体表面积的计算方法与正方体的表面积的计算方法有什么联系?

  五、作业

  练习二第3、4题。

  教学反思

  第4课时:长方体和正方体表面积(2)

  教学内容:P7例5和“练一练”,练习二第5-10题。

  教学目标:

  1.通过探索,学会运用长方体、正方体表面积的计算方法解决求物体的4

  个或5个面的面积之和的实际问题。

  2.让学生在解决问题的过程中发展空间观念,培养思维的灵活性,增强解决问题的实际能力。

  教学重点:根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

  教学难点:根据所求问题的具体特点选择计算方法解决一些简单的.实际问题。

  课前准备:长方体教具

  课时安排:1课时

  教学过程

  一、复习准备

  上节课我们学习了长方体和正方体的表面积,谁能说说什么是长方体(或正方体)的表面积?

  指名回答。

  提问:长方体的表面积怎样求?正方体呢?

  二、探究新知

  1.出示例5:

  指名读题。

  启发思考:要求制作这个鱼缸至少需要多少平方分米玻璃,实际上就是求什么?可以怎样计算呢?

  在小组里交流自己的想法,并选择一种想法算出结果。

  集体交流订正。

  2.出示练一练

  读题后启发学生思考:

  这两个纸盒各用多少平方厘米纸板是那几个面的面积之和?

  学生独立完成,集体订正。

  三、巩固练习

  1.练习二第5题

  直接在书上填写。完成后集体核对。

  2.完成练习二第6题

  学生自己读题。

  启发思考:解答这个问题是求那几个面的面积之和?

  根据给出的条件,这几个面的长和宽分别是多少?

  学生先在小组里交流,然后独立解答。

  3.完成练习二第8题

  先画出昆虫箱的示意图。

  引导学生思考讨论:需要木板和纱网各多少平方厘米分别求的是几个面的面积?哪几个面?

  4.完成练习二第9题

  引导学生观察教室,说说如果要给教室进行粉刷,需要刷哪些面的面积?再结合题目进行解答。

  学生列式,集体订正。

  四、全课总结

  同学们,通过这节课的学习,你学会了哪些知识?你觉得在解决问题的过程中我们要注意些什么?

  五、作业

  练习二第5、7题

  思考题先独立思考然后同桌交流。

  教学反思

  第5课时:体积和体积单位(1)

  教学内容:P10-11例6、例7,“试一试”和“练一练”,练习三第1-4题。

  教学目标:

  1.让学生经历观察、操作、猜测、验证等活动过程,体会物体是占有空间

  的,而且占有的空间是有大小的,理解体积和容积的意义,能直观比较物体体积或容器容积的大小。

  2.让学生在学习活动中进一步发展观察、操作和想象能力,增强空间观念。

  教学重点:通过操作活动,初步认识体积和容积的意义。

  教学难点:通过操作活动,初步认识体积和容积的意义。

  课前准备:直尺,木条。

  课时安排:1课时

  教学过程

  一、教学例6

  1.通过实验,让学生体会到物体是占有空间的。

  教师按书中过程操作。问:为什么会剩一些水?引导学生认识到桃子占有一定的空间。

  如果改用其它的物体呢?再实验。

  小结:通过刚才的实验,我们发现物体是占有空间的。

  2.通过实验使学生体会到物体所占的空间是有大小的。

  出示两个完全一样的玻璃杯,边操作边讲述:一个里边放荔枝,一个里边放桃。想一想:哪个里面放的水会多些?

  学生自由发表意见。

  想一想,两个杯里都装了物体,为什么倒进去的水有多有少呢?

  学生交流。

  小结:物体不仅占有空间,而且占有的空间是有大有小的。

  3.揭示体积的含义

  出示3个大小不同的水果,问:哪个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?

  学生独立思考后让同组的同学交流。

  通过刚才的三次活动,你有什么感受?

  教师在学生交流的基础上揭示体积的含义,并让学生举例。

  二、教学例7

  1.出示两个大小不同的书盒子,拿出书盒里的书,问:你能看出哪个盒子里的书的体积大一些吗?

  教师讲述容积的含义,并问:这两个盒子,哪个的容积大,为什么?

  2.完成“试一试”。

  同桌交流,指名回答。

  三、巩固提高

  1.完成“练一练”第1、2题.

  先做第1题:直接判断,并让学生从体积、容积的含义上说明原因。再做第2题,让学生从容积的含义上进行解释。

  2.完成练习三第1-4题

  四、全课小结:让学生自己说一说这节课所学到的知识。

  教学反思

  第6课时:体积和体积单位(2)

  教学内容:P12-13例8和“练一练”,练习三第5-10题。

  教学目标:

  1.让学生认识常用的体积单位,初步建立1立方厘米、1立方分米的实际大

  小的表象,能正确区分长度单位、面积单位和体积单位。

  2.让学生在具体的问题情境中,经历观察、思考、探究等学习活动过程,增强空间观念,发展数学思考。

  教学重点:认识体积单位。

  教学难点:初步具有1立方米、1立方分米、1立方厘米的实际大小的观念。

  课前准备:棱长1厘米和1分米的正方体各一个。1立方米演示模型架,棱长1分米和1厘米的正方体容器各一个,1升和5毫升的量杯各一个,学生每人准备6个棱长1厘米的正方体。

  课时安排:1课时

  教学过程

  一、复习引入

  谈话:上节课我们认识了体积和容积,谁能说一说什么是体积,什么是容积?

  指名说说,全班交流。

  二、探究新知

  (1)出示如例8的长方体和正方体纸盒:

  你能说说什么是它们的体积吗?

  指名回答。

  观察这两个图形,你知道他们哪个的体积大吗?

  学生猜测。

  当学生有争议时,引导:

  想一想,我们学习平面图形时,是怎样比较的?你有什么好的方法吗?

  突出:可以想把它们分割成同样大小的正方体,再进行比较。

  小结:为了准确测量或计量体积的大小,要用同样大的正方体作为体积单位。

  (2)认识常用的体积单位.

  我们已经知道了常用的长度单位、常用的面积单位.你能根据这些推想出有哪些常用的体积单位吗?

  根据学生发言,逐次板书:常用体积单位──立方厘米、立方分米、立方米.随板书出示相应的模型.(1立方厘米、1立方分米、立方米)

  认识立方厘米、立方分米.

  请同学们取出自己带的1立方厘米、1立方分米的模型,观察它们的形状、大小,量一量它们的棱长各是多少。

  板书:棱长1厘米的正方体,体积是1立方厘米.

  棱长1分米的正方体,体积是1立方分米

  让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米。

  认识立方米.

  先让学生根据立方厘米、立方分米的概念,猜想一个怎样的正方体体积是1立方米,想象1立方米有多大.

  教师用棱长1米的架子演示1立方米的大小,感受1立方米的空间有多大。

  (3)说明:升和毫升也是体积单位。不过它是用来计量液体的体积的。

  直观演示:1立方分米就等于1升。

  由此得出;1立方厘米等于1毫升。

  三、巩固练习

  1.完成练一练

  同桌互相说一说,集体交流。

  2.完成练习三第6题

  指名说说三个图形分别表示什么单位,它们之间有什么关系。

  3.完成练习三第7题

  学生自己数一数,集体交流。

  4.成练习三第8、9题

  学生独立完成,集体订正。

  5.完成练习三第10题。

  学生观察,根据不同方向看到的图形,判断这些木块摆放的情况,瑞得出体积是多少。

  四、全课小结

  这节课我们都学习了哪些知识?你有什么收获?

  五、作业

  练习三第5题和思考题

  教学反思

  第7课时:长方体和正方体的体积(1)

  教学内容:P16-17例9、例10,“试一试”和“练一练”,练习四第1-3题。

  教学目标:

  1.在数学活动中探索并掌握长方体和正方体的体积公式,能运用公式正确

  计算它们的体积,并解决相应的简单实际问题。

  2.让学生在数学活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  教学重点:探索并掌握长方体和正方体的体积公式。

  教学难点:长方体和正方体的体积公式。

  课前准备:学生每人准备30个左右的1立方厘米的小正方体。

  课时安排:1课时

  教学过程

  一、创设问题情境,导入新课

  出示可分割的长方体模型,问:你能告诉大家它的体积是多少?

  说说是怎样想的。

  教师分割演示后设疑,并揭示课题。

  二、操作探究,发现规律

  1.出示例9,要求学生四人一组,用准备好的正方体搭出四个不同的长方体,并编号。

  2.让学生观察并交流。

  (1)这些长方体的长宽高各是多少?

  (2)用了几个小正方体,怎样很快知道所用的小正方体的个数?

  (3)长方体的体积是多少?

  3.在小组里根据拼搭的长方体的数据填表。

  长/厘米

  宽/厘米

  高/厘米

  正方体的个数

  体积/立方厘米

  长方体1

  长方体2

  长方体3

  长方体4

  根据表格,引导分析,发现规律。

  拼搭出的长方体的体积跟小正方体的个数有什么关系?

  4.引导学生猜想:长方体的体积与它的长、宽、高有什么关系?

  三、再次探索,验证猜想。

  1.出示例10,让学生摆出例10中的三个长方体,并提问:各需要多少个小正方体?

  2.让学生动手操作,先想一想,再数一数,看看一共用多少个正方体。

  3.课件演示。

  4.如果让你摆一个长5厘米、宽4厘米、高3厘米的长方体,你能说出要用多少个小正方体吗?

  四、引导概括,得出公式

  1.你发现长方体的体积与它的长、宽、高有什么关系?如何求长方体的体积。

  交流得出长方体的体积计算公式并板书文字公式和字母公式

  2.启发引导

  正方体是长方体的特殊形式,你能根据长方体的体积公式写出正方体的体积公式吗?

  让学生尝试,再交流得出,并阅读26的说明。

  五、应用拓展,巩固练习

  1.做“试一试”

  学生独立计算,交流时先说说公式,再说说是怎样列式的。

  做“练一练”第1题。

  先观察,后独立计算。

  2.做“练一练”第2题

  先让学生选择几个式子说说其表示的意思,再口算。

  3.做练习四第1题

  学生独立解决后由学生逐一评讲。

  六、课堂作业

  练习四第2、3题。

  教学反思

  第8课时:长方体和正方体的体积(2)

  教学内容:P18例11和“练一练”,练习四第4-8题。

  教学目标:

  1.引导学生进一步沟通正方体和长方体体积公式,并在分析比较的基础上,

  得出长方体(或正方体)的体积=底面积×高这一公式,会用次公式计算长方体和正方体的体积,并能用来解决有关的实际问题。

  2.通过学习发展学生的抽象思维能力和空间观念。

  教学重点:应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

  教学难点:应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、复习导入

  1.计算长方体和正方体的体积

  (1)长5米、宽4米、高4米

  (2)棱长5厘米

  2.长方体的体积计算公式是怎样的?它是如何推导出来的?正方体的体积计算公式呢?

  二、探究长方体和正方体通用的体积计算公式

  1.出示例11长方体和正方体图,对照公式,问:这里的长×宽和棱长×棱长分别求的是什么?

  你能指出长方体和正方体的底面吗?怎样求它们的底面积?

  2.小组讨论;如果已知长方体的底面积和高,能求出长方体的体积吗?怎样求?

  根据学生的回答板书。

  如果已知正方体的底面积和高,是否也能求出正方体的体积呢?怎样求?教师板书完整。并用字母公式表示。

  3.完成“练一练”

  第1题,让学生先计算底面积再计算体积。

  第2题,问:这道题的条件是什么?利用哪个公式来计算体积?

  学生各自计算,指名板演,共同评议。

  三、巩固提高

  1.做练习四第5题

  学生分析后独立计算,集体评讲。

  2.做练习四第6题

  学生独立计算,然后全班交流。

  3.做练习四第7题

  读题理解题意,用方程独立解答,交流订正。

  四、课堂小结

  五、布置作业

  练习四第4、8题。

  教学反思

  第9课时:体积单位间的进率(1)

  教学内容:P19例12和“练一练”,练习四第9-14题。

  教学目标:

  1.让学生经历1立方分米=1000立方厘米,1立方米=1000立方分米的推导

  过程,明白相邻的两个体积单位间的进率是1000的道理,会正确运用体积单位间的进率进行名数的变换。

  2.让学生用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌

  握它们相邻两个单位间的进率。

  教学重点:根据进率进行相邻体积单位的换算。

  教学难点:培养学生的合理推理能力,发展学生的空间观念。

  课前准备:棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  课时安排:1课时

  教学过程

  一、复习导入。

  1.提问:

  (1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?

  (2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?

  (3)常用的体积单位有哪些?相邻的两个体积单位间的进率是多少?

  2.问:你能猜出相邻体积单位间的进率是多少吗?

  二、自主探索,验证猜测

  1.教学例12

  (1)挂图出示棱长为1分米的正方体以及棱长为10厘米的正方体

  (2)这两个正方体的体积是否相等?你是怎样想的?

  (3)用图中给出的数据分别计算它们的体积。

  学生分别算一算,然后在班内交流。

  (4)根据它们的体积相等,可以得出怎样的结论?

  (5)谁来说一说:为什么1立方分米=1000立方厘米?

  2.用同样的方法,你能推算出1立方米等于多少立方分米吗?

  学生小组讨论,班内交流

  3.小结:你能说每相邻两个体积单位间的进率是多少?

  4.你能用体积单位间的进率解释为什么1升=1000毫升呢?

  三、巩固深化

  1.出示练一练的习题

  学生独立完成

  班内交流你是怎样想的?

  2.出示练习四第9题

  学生独立完成表格,班内交流。

  出示练习四第10-12题

  学生独立完成,班内交流你是怎样想的?

  3.出示练习四第13题。

  学生读题,思考:两个容器各能盛水多少毫升是求什么?也就是两个长方体的什么?独立完成,说是怎样想的。

  四、课堂总结

  五、课堂作业

  练习四第14题

  教学反思

  第10课时:相邻体积单位间的进率(2)

  教学内容:P21-22练习四第15-19题。

  教学目标:

  1.在学生掌握体积及容积单位的基础上,进一步明白相邻的两个体积(容积)单位间的进率是1000的道理,会正确运用体积单位间的进率进行名数的变换。

  2.提高学生运用已学知识解决实际问题的能力。

  教学重点:能正确应用体积单位间的进率进行名数的变换。

  教学难点:解决一些简单的实际问题。

  课前准备:棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  课时安排:1课时

  教学过程

  一、知识复习

  1.我们已经学过的体积单位有哪些?它们之间有怎样的关系?

  2.我们已经学过的容积单位有哪些?它们之间有怎样的关系?

  3.容积和体积单位之间有怎样的关系?

  二、课堂练习

  1.做练习四的第15题。

  让学生先分别说说长方体和正方体的体积和表面积各是怎样计算的,再让学生分别算出它们的体积和表面积。

  集体评讲。

  2.做练习四的第16、17题。

  求“需要多少平方分米硬纸板”就是求什么?需要哪些条件?

  求“需要铁皮多少平方分米”就是求它的什么?需要哪些条件?

  学生分析后逐题解答。

  3.做练习四的第18题

  求第1个问题就是求它的什么?需要哪些条件?

  求“需要多少泥土”就是求什么?需要哪些条件?

  求“需要多少平方米的木条”就是求它的什么?需要哪些条件?

  学生再分析的基础上逐题解答。

  三、本节课总结

  四、课堂作业

  做练习四的第19题。

  五、指导解答思考题。

  读题后讨论:“表面积比原来增加56平方厘米”是哪部分的面积?这部分面积是怎样得到的?

  学生尝试解答。

  六、阅读“你知道吗”内容。

  教学反思

  第11课时:整理与练习(1)

  教学内容:P23“回顾与整理”,“练习与应用”第1-6题。

  教学目标

  1.进一步认识长方体和正方体的特征,理解体积和容积的意义,熟练进行体积和容积单位间的换算,掌握长方体和正方体体积及表面积的计算方法,能运用公式

  解决实际问题。

  2.提高学生应用已有知识解决实际问题的能力。

  教学重点:对本单元所学内容进行梳理,进一步完善有关长方体和正方体的认知结构。

  教学难点:对本单元所学内容进行梳理,进一步完善有关长方体和正方体的认知结构。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、知识整理

  长方体和正方体各有哪些特征?有什么联系?

  体积和容积的意义分别指什么?常用的体积和容积的单位有哪些?相邻体积单位间的进率是多少?

  怎样计算长方体和正方体的表面积?解决有关表面积的实际问题要注意什么?

  你是怎样发现长方体体积公式的?正方体体积公式和她有什么联系?

  学生逐题分小组讨论,并在全班交流,教师根据学生的回答适时板书。

  二、练习与应用

  1.做练习与应用的第1题

  先判断是什么立体图形,并说说你判断的依据是什么?

  估计哪个立体图形的体积最大,再计算它们的体积。验证自己的判断。

  分别计算它们的表面积。

  2.做练习与应用的第2题

  读题,仔细观察,让学生说说你发现了什么?两次的读数分别是多少?这能说明什么?增加的实际上是什么体积?

  3.做练习与应用的第3题

  让学生先说说名数互化的方法,再观察每题是把什么名数改写成什么名数。

  学生独立完成,集体评讲。

  4.做一个长8厘米,宽5厘米,高4厘米的长方体,至少需要铁丝多少厘米?(接头忽略不计)。如果做一个棱长6厘米的正方体呢?

  学生独立计算,集体评讲。

  5.用一根长48厘米的铁丝做一个正方体的框架,这个正方体的棱长最大是多少?如果改做一个长5厘米,宽4厘米的长方体,高应该是多少?

  学生自己解答,求高时可提示用方程去解答。

  6.小结

  三、课堂练习

  1.0.23立方分米=()立方厘米

  3820立方分米=()立方米

  3200立方厘米=()毫升=()升

  5.14升=()毫升=()立方厘米

  2.用72厘米长的铁丝做一个正方体框架,框架的棱长是多少?所有

  的面贴上纸,要贴多大的面积?所占的空间是多大?

  四、课堂作业

  “练习与应用”第4-6题。

  教学反思

  第12课时:整理与练习(2)

  教学内容:P24-25“练习与应用”第7-10题。

  教学目标:

  1.进一步掌握长方体和正方体体积及表面积的计算方法,能运用公式解决生活中求表面积和体积的实际问题。

  2.提高学生应用已有知识解决实际问题的能力。

  教学重点:使学生更好地掌握本单元所学的知识,学会运用所学知识解决一些简单的实际问题。

  教学难点:培养学生解决问题的能力。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一、课堂练习

  师:在我们的生活中有许许多多的长方体和正方体,我们来说说它们的实际应用,解决生活中的哪些问题时要用到这些知识?下面这几道题中哪些知识的应用?

  1.做练习与应用的第7题

  (1)学生读题,讨论:这两个问题分别求的什么?

  (2)学生回答后独立计算。

  集体评讲。

  2.做练习与应用的第8题

  (1)学生读题,获取题中已知信息。

  (2)说说问题实际上是求什么。

  指名学生回答,集体评价。

  3.补充练习

  (1)一个无盖的正方体硬纸盒,棱长4.5厘米,做这个纸盒至少要用多少平方厘米硬纸板?它的容积是多少?

  (2)一个长方体汽油桶,高0.5分米,底面是边长4分米的正方形,做这个汽油桶至少需要多少铁皮?如果每升油2.5元,这桶汽油价值多少元?(桶的厚度忽略不计)

  (3)把一个棱长60厘米的正方体钢材,锻造成横截面面积是16平方厘米的长方体钢材,锻成的长方体钢材长多少米?

  以上各题,学生读题后各自练习,集体评讲。

  4.完成思考题

  先让学生思考:哪个地方的小正方体三面涂色?哪个地方的小正方体二面涂色?哪个地方的小正方体一面涂色?

  然后再根据它们所在的位置去数一数,算一算。

  二、课堂练习小结

  三、课堂作业

  做练习与应用的第9、10题

  教学反思

  第13课时:整理与练习(3)

  教学内容:P25“探索与实践”第11-13题。

  教学目标:

  1.在实际操作中再次感受长方体和正方体顶点和棱的特点。

  2.使学生进一步体会数学学习与实际生活的联系,感受数学知识的价值。

  3.引导学生对自己在探究新知识过程中的表现和应用知识解决实际问题的能力作出实事求是的评价。

  教学重点:数学学习与实际生活的联系。

  教学难点:感受数学知识的价值。

  课前准备:小黑板

  课时安排:1课时

  教学过程

  一.练习与应用第11题

  可以先出示一个长方体框架,让学生观察它的特征

  引导学生思考做一个长方体或正方体框架时,应该怎样选料。

  做好后组织相应的展示和交流,让学生介绍自己选料时的思考过程

  二、练习与应用第12题

  出示学生在课前收集的相关数据,进行计算和交流。

  三、评价与反思

  先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,对自己作出客观,合理的评价。

  引导学生对自己在探究新知识的过程中的表现和应用知识解决实际问题的能力作出实事求是的评价。

  四、作业

  练习与应用第13题及思考题。

  教学反思

  第14课时:表面涂色的正方体

  教学内容:P26内容。

  教学目标:

  1.通过活动,积累由特殊到一般寻找数学规律的数学经验。

  2.进一步培养用分类计数的方法解决问题的能力,发展空间想象力。

  教学重点:找出小正方体涂色以及它所在的位置的规律。

  教学难点:一面、两面、三面涂色小正方体个数以及它所在位置的规律。

  课前准备:27个1立方厘米的正方体

  课时安排:1课时

  教学过程

  一、引入新课

  谈话:课前,我们通过魔方认识了三面涂色、两面涂色、一面涂色的相关情况,谁能说说在魔方中三面涂色、两面涂色、一面涂色的部件分别处在魔方的什么位置?能不能通过旋转把魔方中三面涂色的部分移到两面涂色或只有一面涂色的位置?

  看来三面涂色、两面涂色、一面涂色的位置是确定的。今天,我们就来一起探究跟表面涂色有关的正方体的计数问题。

  板书:分类计数。

  课件出示问题:

  把一个表面都涂上颜色的正方体木块,切成64块大小相同的小正方体。

  (1)三面涂色的小正方体有多少块?

  (2)两面涂色的小正方体有多少块?

  (3)一面涂色的小正方体有多少块?

  二、探究正方体中表面涂色的小正方体

  (一)棱长为4的正方体

  提问:三面涂色的小正方体有多少个?处在什么位置上的小正方体才会是三面涂色的?(课件显示)闭上眼睛想一想三面涂色的小正方体在什么位置。

  提问:两面涂色的小正方体有多少个?处在什么位置?(课件显示)

  这个数据可以通过怎样的计算获得?

  提问:一面涂色的小正方体有多少个?处在什么位置?(课件显示)这个数据该通过怎样的计算获得?

  追问:六面都没有涂色的小正方体有多少个?这样的小正方体处在什么位置?它的个数该如何计算?

  引导:将大正方体剥去“表皮”,剩下的是什么样子?

  指出:六面都没有涂色的小正方体在大正方体的中间。

  两种算法:64—8—24—24=8(个),2×2X2=8(个)。

  操作教具,验证学生的发现:

  (1)将处在顶层的4个顶点上的4个小正方体从教具中取下,让学生见证“三面涂色”。

  (2)将处在非底层的8条棱上的16个小正方体取下,让学生明确计算方法、见证“两面涂色”。同时追问:还有的两面涂色的小正方体在哪里?

  (3)取出其中一面涂色的小正厅体,让学生明确计算方法,见证“一面涂色”。(4)呈现“六面都没有涂色”的小正方体(由8个小正方体组成的棱长为2的正方体)。

  (5)将最底层的小正方体按类归位,验证计数的结果及计算方法。

  要求:将正方体的棱长各种正方体的个数及计算方法填在活动记录表。

  引导:计算所需的数据与原正方体的棱长有什么关系?

  (二)棱长为3的正方体

  学生自主完成,将探究结果填在活动记录表。完成后指名汇报交流。

  (三)棱长分别为5、6的正方体

  学生自主完成,将探究结果填在活动记录表,并在小组内交流。

  投影呈现学生的活动记录结果,通过课件呈现实物加以验证。引导学生初步发现正方体表面涂色问题的一般规律。

  (四)棱长为a的正方体

  提问:如果棱长为n,三面涂色的小正方体有几个?两面涂色、一面涂色和六面都没有涂色的小正方体个数分别怎样表示?

  (五)延伸思考

  课件出示问题:将一个长7厘米、宽5厘米、高4厘米的长方体木块表面涂色后,切成棱长为1厘米的小正方体木块,三面涂色、两面涂色和一面涂色的木块各有几个?

  教学反思

六年级数学上册全册教案4

  教学内容:P4例2及“练一练”、练习二第1—5题

  教学目标:

  1、使学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决三步计算的实际问题。

  2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

  3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

  教学重点难点:如何合适地用字母或含有字母的式子表示题中两个未知的数量。

  教学资源:小黑板

  教学过程:

  一、谈话导入,揭示课题

  前两节课,我们已经学过列方程解决实际问题,你能说说列方程解决实际问题的大致步骤吗?

  这节课我们按列方程解决实际问题的步骤继续研究这方面的知识。

  二、师生探究,学习新知

  1、学习例2

  (1)出示例2。读题,理解题意。

  (2)师:你能用线段图表示题中数量之间的关系吗?

  生各自独立画线段图。

  (3)展示交流,明确合适的画法。

  (4)师:结合题目和线段图,你能说说数量之间的相等关系吗?

  生答,师出示,齐读:

  水面面积+陆地面积=颐和园的占地面积

  (5)师:如果用x来表示陆地面积,那么可以怎样表示水面面积呢? 生答后师在线段图上标注好,并写出设句,齐读设句。

  (6)让生根据数量关系列出方程。

  师板:x+3x=290

  说说这个方程与前面学的方程有什么不同。

  问:你会解这个方程吗?把你的想法和同桌交流一下。

  (7)全班交流,师随机板书过程,并说明:解这样的方程时,一般应先化简。

  追问:求出的x的值表示哪个数量?水面面积该怎样求?

  生答师板:3x=72.5×3=217.5

  (8)问:这道题怎样检验?

  生交流自己的想法后,让生看书P4的检验过程,说说每一步检验的是什么。师随机板检验过程,写出答句。

  2、“练一练”

  (1)学生独立完成,要求写出检验过程。

  (2)集体交流,说说是根据怎样的数量关系列出方程的,又是怎样解列出的方程的。

  (3)比较:

  引导学生说说“练一练”的解答过程与例2有什么相同的地方?有什么不同的地方?

  追问:你觉得列方程解答这样的问题要注意些什么?

  三、巩固练习

  1、练习二第1题

  (1)先让学生说说这几道方程与例题中的方程有什么共同的.特点,解这些方程时先要做什么,这样做的依据是什么。

  (2)学生独立完成。

  (3)交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验,是怎样检验的。

  2、练习二第2题

  学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

  提醒学生:填出的含有字母的式子要进行化简。

  3、练习二第5题

  (1)先独立解答。

  (2)交流,让学生说清楚自己解决问题时的思考过程,进一步明确列出的方程依据了怎样的数量关系。

  四、全课总结: 这节课学习了什么内容?你有什么想要提醒大家注意?

  五、作业: 练习二第3、4题。

六年级数学上册全册教案5

  教学目标:

  1、结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。

  3、进一步体会数学与日常生活的密切联系。

  教学重点:目标1、2。

  教学难点:目标2。

  教学过程:

  活动一、创设情境,引入新知

  笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。

  1、出示平面图。

  2、观察图,说说从图中知道了什么?

  3、思考:比例尺1:100是什么意思?

  (1)独立思考。

  (2)同伴交流。

  (3)汇报。

  得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。

  4、量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。笑笑卧室实际的长是()米,宽是()米,面积是()平方米。直接提出“笑笑卧室实际的面积是多少平方米?

  (1)学生四人小组合作完成。

  (2)汇报交流。

  强调:必须先求出实际的长和宽,然后再算出实际的面积。

  5、笑笑家的.总面积是多少平方米?

  (1)学生独立完成。

  (2)集体订正。

  6、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。

  (1)理解题意。

  (2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。

  (3)进行计算。

  7、笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。

  (1)图上1厘米表示的实际距离是多少厘米?

  (2)她画的平面图的比例尺是多少?

  活动二、试一试

  1、小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是()千米。

  (1)理解题意,独立思考。

  (2)交流自己的想法。

  (3)进行计算。

  活动三、练一练

  1、完成32页第2题。

  (1)独立完成。

  (2)汇报交流。

  (3)提出问题。

  2、一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。

  (1)独立计算。

  (2)汇报,全班交流。

  (3)说说自己的想法。

  活动四、实践活动

  1、找一张中国地图,量一量,算一算。

  (1)量出北京和台北之间的距离是()厘米,它们之间的实际距离大约是()千米。

  (2)量出乌鲁木齐和上海之间的距离是()厘米,它们之间的实际距离是()千米。

  2、找一张中国地图,用▲表出你家乡的大致位置。

  (1)估一估在地图上你的家乡与北京的距离大约是()厘米,实际距离大约是()千米。

  (2)放暑假时,你打算从()到()去旅游,两地之间的实际距离大约是()千米。

  3、量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。

  学生可以在家长的帮助下,在家里完成。

  课后小结:说说你今天的收获和问题。

六年级数学上册全册教案6

  一、学生情况分析

  本班共有学生56人,其中男生35人,女生21人,学生的听课习惯已初步养成,并班上同学思想比较要求上进,有部分学生学习态度端正学习能力强,学习有方法,学习兴趣浓厚;另一部分学生表现为学习目的不明确,学习态度不端正,作业经常拖拉甚至不做。从去年的学习表现看,学生的计算的方法与质量有待进一步训练与提高。故在新学期里,我们在此方面要多下苦功,面向全体学生,全面提高学生的素质,全面提高教育教学质量,为培养更多的四化建设的新型人才而奋斗。

  二、教材分析和教学目标

  (一)数与代数

  1.第二单元“百分数的应用”。学生将在这个单元的学习中,在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解;能利用百分数的有关知识或运用方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。

  2.第四单元“比的认识”。学生将在这个单元的学习中,经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系;在实际情境中,体会化简比的必要性,会运用商不变的性质和分数的基本性质化简比;能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

  (二)空间与图形

  1.第一单元“圆”。学生将在这个单元的学习中,结合生活实际,通过观察、操作等活动认识圆及圆的对称性,认识到同一个圆中半径、直径、半径和直径的关系,体会圆的本质特征及圆心和半径的作用,会用圆规画圆;结合具体情境,通过动手实验、拼摆操作等实践活动,探索并掌握圆的周长和面积的计算方法,体会“化曲为直”的思想;结合欣赏与绘制图案的过程,体会圆在图案设计中的应用,能用圆规设计简单的图案,感受图案的美,发展想象力和创造力;通过观察、操作、想象、图案设计等活动,发展空间观念;结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题;结合圆周率发展历史的阅读,体会人类对数学知识的不断探索过程,感受数学文化的魅力,激发民族自豪感,形成对数学的积极情感。

  2.第三单元“图形的变换”。学生将在这个单元的学习中,通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,能有条理地表达图形的平移或旋转的变换过程,发展空间观念;经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

  3.第六单元“观察物体”。学生将在这个单元的学习中,能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的`形状,并画出草图;能根据从正面、侧面、上面观察到的平面图形还原立体图形(5个正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状;能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围;经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而改变,能利用所学的知识解释生活中的一些现象。

  (三)统计与概率

  第七单元“统计”。学生将在这个单元的学习中,通过投球游戏、两城市降水量等实例,认识复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。

  (四)综合应用

  本册教材安排了三个大的专题性的活动,即“数学与体育”、“生活中的数”,旨在促使学生综合运用所学的知识解决某一生活领域的实际问题。教材还安排了“看图找关系”的专题,旨在使学生体会图能直观、清晰、简捷地刻画关系。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

  (五)整理与复习

  教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答一些练习题目。

六年级数学上册全册教案7

  第一单元 圆

  课题:圆的知识(一) 第 2课时

  课题:圆的周长 第 5课时

  课题:圆周长公式的应用 第 6课时

  课题:圆的面积 第7课时

  2、用数方格的方法求圆面积大小

  课题:练习6~11 第10 课时

  教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

  教学难点:培养学生的空间能力,提高解决实际问题的能力。

  教学目标:

  1.能灵活运用本单元研究得出的知识解答问题。

  2.通过图形的组合,发展学生的空间想象能力。

  3.进一步感受数学的应用价值。

  教学准备:圆规、直尺、小黑板

  教学过程:

  一.复习

  1、什么叫半径?什么叫直径?怎样求圆的周长?怎样求圆的面积?

  二.展开

  1.练习。

  先指名板演,其余同学各自做在草稿纸上,然后全体师生共同讲评,指出存在的错误,尤其是做在草稿纸上的同学一定要自己找出错误的原因和正确的解答过程,小组进行练习。

  然后派一名代表来汇报自己小组的分析过程和解答算式,最后师生一起小结,在小结要提醒学生其中一些题在解答中要思考的地方:第13题,大圆直径为2×3=6㎝,小圆直径是2㎝,它们的面积比是(62 )2 ÷(22 )2=9÷1,所以直径AB的圆面积是大圆面积的.19 。第14题,图中长方形面积是4×6=24(㎝2),根据已知条件可知,大三角形面积为24+6=30(㎝2)(△②的面积比△①的大6㎝2,即大三角形面积比长方形大66㎝2)。因此,(4+a)×6÷2=30 a=30×2÷6-4=6㎝。第16题,甲、乙两块钢板上圆片的面积之和相等,因此剩下的边角料一样重(厚度相等)。

  4.小结。

  三.巩固

  智力游戏

  先让学生各自独立思考,并要求学生说出能拼出哪几号图形,对认为不能拼出的,一定要说明理由。然后,指名汇报,特别要求汇报的同学要讲一讲在拼图中的思考过程。最后师生共同较对。

  第1小题可拼成的图形有①、③、④;

  第2 小题可拼成的图形有①、③;

  第3小题可拼成的图形有③、④。

  四.总结

  五.作业

  教学反思:

  第二单元:分数混合运算

  第1课时 分数混合运算(一)

  教学目标:

  知识目标:

  使学生体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。

  能力目标:培养学生操作、归纳能力。

  情感目标:体会数学与生活的联系。

  教学重点难点:分数混合运算的方法。

  教学过程:

  教学过程:课前谈话:同学们说说自己的兴趣爱好。(学生畅所欲言)

  一、旧知铺垫

  我们的老朋友淘气也有个爱好,那就是做计算题。今天,他想和大家比试比试!

  1、出示计算题

  要求:先说出运算顺序,再计算。

  48÷2÷6 16×(15÷3) 18÷2×10

  13×2×5 72÷(9÷3) 24÷(2×3)

  2、揭示课题

  今天,我们一起研究分数混合运算(板书课题)

  二、合作学习,探究分数混合运算的顺序

  1、出示问题情境

  过渡语:经过课前的谈话,我了解到同学们的兴趣很广泛。相信大家也参加了不少的兴趣小组吧!淘气在课下的时候对同学们参加兴趣小组的情况作了个调查。

  2、你从这幅图中得到了哪些数学信息?

  3、你能提出哪些数学问题?

  4、解决问题:航模小组有多少人?

  ① 请你先估算一下航模小组有多少人?(说明理由)

  ② 请你用图来表示三个量之间的关系。

  (学生尝试画图,教师巡视)

  ③ 学生独立思考和组内交流后,进行全班交流。

  (学生边说教师边板书)

  ④ 尝试计算

  我们用画图的方法,清楚地了解了三个量之间的关系,请你算一算,航模小组到底有多少人?

  (学生独立计算)

  ⑤ 全班交流

  A 12×1/3=4(人 )

  4×3/4=3(人)

  B 12×1/3×3/4=3(人)

  预设一:如果学生出现了A、B两种方法,并且计算方法较多。在交流时对于B种不同算法进行重点交流。

  预设二:如果算法单一,教师可以安排学生小组合作讨论计算方法。

  5、思考:回顾刚才的解题过程,你发现了什么?

  分数混合运算的顺序与整数混合运算的顺序是一样。(教师进行引导总结)

  6、试一试

  有了这惊奇伟大的发现,我们赶快试一试吧!

  ①学生独立完成,如有困难可以求助老师或同组同学。

  5/9×3/5÷6/7 12÷4/5÷3/8

  ②全班交流(说一说运算顺序)

  三、登山游戏中巩固新知

  五一时节,春光明媚,正是游玩的好时候。今天就让我们一起去登上吧!

  以小组为单位进行登山比赛,看哪个组最先登上顶峰摘得红旗()

  在山的不同位置设有不同的计算题,学生答对方可前进。学生可根据自己情况自由选择登山线路。到达山顶后,红旗处设有一题(解决实际问题的)答对者摘得红旗。

  全班交流。

  解决红旗里的问题后,对同学进行环保节水教育。请同学说一说节水的好点子。

  四、总结

  请同学们说一说这节课的收获与体会。

  五、课外作业

  同学们做几张分数、整数卡片,和一些加减乘除符号。同学们之间互相玩卡片做计算。

  教学反思:

六年级数学上册全册教案8

  教学内容:

  教材第118页总复习第1——5题。

  教学目标:

  1、理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。

  2、掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。

  3、掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。

  教学重点:

  概念和计算方法。

  教学难点:

  掌握解决分数乘,除法问题的思路和方法。

  教学过程:

  一、分步复习活动准备

  将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。

  师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。

  二、复习分数乘除法的`知识

  1、主持人持知识问题卡提出问题,分别指名回答。

  分数乘法的意义是什么?与整数乘法相同吗?

  分数除法的意义是什么?与整数除法相同吗?

  分数乘法的计算法则是怎样的?

  什么叫倒数?怎样求一个数的倒数?

  分数除法的计算方法是怎样的?

  2、主持人持难点问题卡提出问题,指名回答。

  分数乘、除法的关系是怎样的?

  分数除法的计算具体要注意几点?

  0有倒数吗?为什么?1呢?

  3、教师组织学生活动

  计算。

  3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6=

  21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=

  4、复习比的知识

  第二位主持人提出问题,学生回答。

  知识性问题:

  什么叫比?比的各部分名称是怎样的?举例说明?

  怎样求比值?

  比与分数、除法有什么联系?

  比的基本性质是什么?怎样化简比?

  难点问题:

  为什么比的后项不能为0?

  求比值与化简比有什么区别?

  练习:

  3÷4=()/()=()/12=():32=12:()

  说出下面每个比的前项、后项,并求出比值。2:5 0、6÷0、3 4/7

  把下面各比化成最简整数比、 8:12 0、25:0、45 1/4:1/8

  (5)复习解决问题的解题思路和方法。

  第三位主持人上场。

  怎样解决分数乘除法问题呢?

  主持人点4名同学板演教材第118页第3、4、5题。

  对4名学生做的情况进行评议。

  对比观察第3题第(1)(2)小题。

  数量关系式是:原价×1/5=现价

  第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。

  学生归纳分数乘除法问题的规律。

  单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;

  单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。

  验证第4、5题。

  第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。

  第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。

  主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。

  师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。

  三、应用练习

  (1)完成练习二十七第5题。

  (2)完成练习二十七第10、11题。

  (3)完成练习二十七第7、8题,学生做后汇报思路和方法。

  四、课堂小结

  通过这节课的复习活动,你的学习有什么新的收获?

【六年级数学上册全册教案】相关文章:

六年级数学上册全册教案01-19

六年级上册美术全册教案02-01

小学数学第十册全册教案12-13

三年级上册数学全册教案08-26

人教版六年级数学上册全册教案(精选11篇)08-25

人教版六年级数学上册全册教案2篇01-19

人教版六年级数学上册全册教案3篇01-05

人教版六年级数学上册全册教案(3篇)01-05

人教版六年级数学上册全册教案5篇01-24