五年级下册数学教案

时间:2023-01-12 10:19:22 数学教案 我要投稿

五年级下册数学教案精选15篇

  作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。写教案需要注意哪些格式呢?下面是小编帮大家整理的五年级下册数学教案,欢迎阅读与收藏。

五年级下册数学教案精选15篇

五年级下册数学教案1

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的`正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级下册数学教案2

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的`。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案3

  教学内容:

  根据测量的有关内容,自行设计的综合实践活动

  教学目标:

  1、 学会步测、目测等测量方法,了解光侧、影测、绳测等测量方法,进行实际测量。

  2、 在解决生活中的实际问题中发展空间观念和抽象概括能力。

  3、 提高运用所学知识解决实际问题的能力和计算能力。

  4、 体会数学在现实生活中的应用。

  教学准备:

  课件、米尺、卷尺、等

  教学过程:

  一、 提出问题

  师:我们认识了长度单位米、分米和厘米,并且知道了它们大概的长度,那么今天我们就用我们所学的知识来进行实际测量。在进行测量前,我们要了解哪些测量知识呢?例如:测量工具、测量单位、测量对象、测量方法等等。

  (学生提到了进行测量的时候,要使用尺子,记录测量结果的.时候要用到米、分米、厘米等长度单位。)

  二、活动程序

  1、 准备活动:展示人们测量一些建筑物的课件。

  2、 布置活动

  师:我们已经掌握了测量的相关知识,下面就请同学们结合实际生活,选择一个你想测量的对象,选用适当的测量方法进行实际测量。

  测量要求

  (1)以小组为单位,进行实际测量。

  (2)每小组要在活动卡片上做好记录。

  3、提供给学生“实际测量活动”卡片。

  卡片上记录了关于测量内容和测量方法的一些建议,学生也可以根据自己选择的测量对象和测量方法,填好上面的表格。

  4、活动开始

  每个小组选择1—2个测量对象进行实际测量,小组内进行归纳总结,并分析不同测量方法的优缺点。

  全班交流总结:首先每个小组选择一名代表对测量结果进行汇报。其次每个小组发言之后,其他小组进行评议。鼓励学生指出发言小组的不足与错误,并给予补充或更正。最后,教师针对全班的汇报结果进行总结。在现实生活中,有很多实际测量的方法,我们要注意这些方法的实用性和合理性。在遇到实际测量问题时,我们应该选择适当的测量方法,简单、巧妙地解决实际问题。

五年级下册数学教案4

  教学目标:

  知识与技能

  1、理解容积的含义,体会容积和体积的关系。

  2、认识常用的容积单位,感知建立升和毫升的容积观念。

  3、掌握容积的计算方法,能进行单位之间的换算。

  过程与方法

  1、经历容积概念的探究与理解过程。

  2、通过比较,明确容积单位与体积单位的区别和联系。

  情感态度与价值观

  1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

  教学重点:建立容积的观念,掌握容积单位之间的进率。

  教学难点:理解容积与体积的联系与区别。

  教学过程:

  一、创故事情景

  今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

  二、复习导入

  第一变 回忆

  (1) 什么叫体积?

  (2) 体积单位有哪些?它们之间的进率是什么?

  (3) 体积的计算方法是什么?

  三、探究新知

  第二变 思考

  1、教学容积概念。

  运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

  生:空心的 能装东西的

  师:你在生活中见过哪些空心的,能装东西的物品?

  生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

  师:你想知道这些容器里面能装多少东西吗?

  这就是我们今天学习的内容:容积和容积单位 (板书)

  什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。

  练习

  根据容积定义判断:

  (1)电饭褒的体积就是它的容积( )

  计量容积一般可以用体积单位( )

  (2)数学书P53页第一题。

  突出:体积 (外面量数据) 容积(里面量数据)板书

  2、教学容积单位:升和毫升

  师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

  生:500毫升 18.9升

  师:升、毫升就是我们今天要学习的容积单位。板书

  生:净含量:250毫升 1升……

  师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

  (选1升和1立方分米来对比,为实验作铺垫)

  回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

  练习:(1)四人小组互相说说各自收集物品的容积。

  (2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

  3、教学容积单位与体积单位之间的换算。

  师:谁知道这两个容积单位之间的进率是多少?生:1000。

  师:你是怎么知道的?

  生:书上写的。

  师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

  由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

  师:从实验中你证实了1升=1000毫升,还得出什么结论?

  生:1升=1立方分米。

  如此类推:你还能推理出什么关系?

  生:1毫升=1立方厘米 1立方米=1000升

  练习:数学书P52做一做第一题和P53第四题

  第三变:计算

  4、教学容积的计算

  出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

  指一名学生读题。(突出容积的计算方法与体积计算方法相同)

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

  (2)学生做完后集体订正。

  第四变:运用

  四、应用知识,解决问题

  咳两声,讲了一节课,老师口干了,很想喝水。

  师:谁知道一个正常人每天要喝多少水才合适才健康?

  生:1500毫升、1000毫升……

  师:你是从哪里知道的?

  生:书里介绍的。

  师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

  小组活动:

  (要求组长分工要明确:不同的.人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

  (1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

  全班分享

  五、总结质疑

  今天学习了容积和容积单位,你有什么收获?

  六、拓展延伸,发展思维

  作业:

  1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

  2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

  教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

  教学反思:

  在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。

五年级下册数学教案5

  课题:简单的土石方计算

  教学目标:

  1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

  2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

  3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

  教学重点:

  熟练运用长方体和正方体的体积计算公式解决实际问题。

  教学难点:

  长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

  教学过程:

  一、巧设情境,激趣引思。

  同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

  (1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

  (2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

  (3)学生分组讨论,指名回答问题。

  这节课我们运用体积的有关知识,解决实际生活中的问题

  二、自主互动,探究新知。

  课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

  教师介绍“方”,让学生用方描述挖出的土。

  课件出示例题及拦河坝的和示意图。

  让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

  怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的'体积=底面积×高。

  让学生尝试解决问题,并交流计算的方法和结果。

  三、应用拓展,反思交流。

  1、应用:

  (1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

  (2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

  第3、4题,让学生先说一说,要解决问题,先要求出什么?

  2、拓展:

  练一练5 板书设计:

  简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

  横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案6

  【教学内容】

  教科书第1~2页的例1以及相关的练习。

  【教学目标】

  1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

  2?培养学生的分析能力和归纳概括能力。

  3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

  【教具准备】

  多媒体课件和视频展示台。

  【教学过程】

  一、复习引入

  师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

  等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

  二、教学新课

  1?教学例1,理解单位“1”

  师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

  师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

  等学生分好后,抽一个学生分的小圆在视频展示台上展示。

  师:这时,小华的爸爸又提出了问题。

  课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

  引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

  师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

  多媒体课件演示下面的月饼图:

  引导学生理解两个1/4代表的数量不一样。

  师:为什么会出现这种现象呢?

  引导学生说出前一个1/4是1个月饼的.1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

  师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

  让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

  师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

  师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

  请分一分,并填空。

  课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

  引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

  师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

  板书单位“1”的含义。

  师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

  2?理解并归纳分数的意义

  师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

  学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

  师:想想自己操作的过程,你能说一说什么是分数吗?

  学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

  师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

  归纳并板书分数的意义,板书课题。

  试一试:涂色部分占整个图形的几分之几?

  师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

  生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

  师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

  3?说生活中的分数

  师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

  学生说生活中的分数。

  三、课堂小结

  (略)

  四、课堂作业

  1?第4页课堂活动第2题。

  2?练习一第1,2,3,4题。

  分数的意义

  师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

  课件出示如下的题目:

  (1)把一个月饼平均分成4份,其中的1份是这个月饼的();

  (2)把一张手工纸

五年级下册数学教案7

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的`长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

五年级下册数学教案8

  信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

  1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

  2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

  3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

  一、引入:

  1、出示:条形统计图

  (1)某电影院上月各类影片观众人数统计图

  (2)新芽书苑20xx年3月第一星期故事书销售情况统计图

  2、提问:你已知道了条形统计图的哪些知识?

  3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

  (1) 上虞电影院20xx年(1~6)月观众人数统计图。

  (2) 百官镇一农户96~20xx年人均收入统计图。

  二、展开:

  (一)折线统计图的特点和作用。

  1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

  (1) 学生自由讨论交流。

  (2) 这两类统计图最大的区别是什么?

  2、结合条形统计图的特点,归纳折线统计图的特点。

  3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

  4、结合课本进一步深入了解折线统计图的特点和作用。

  (二)折线统计图的`绘制。

  1、你认为哪幅条形统计图用折线统计图来绘制更合适?

  2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

  A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

  3、学生尝试绘制。

  (1) 出示“我们的调查资料”。

  (2) 想一想,哪几组数据用折线统计图绘制比较合适?

  (3) 请选择其中一组数据绘制。

  (4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

  (5)大组交流绘制情况,并纠错。

  三、应用

  1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

  2、出示:百官镇一农户96~20xx年人均收入统计图。

  思考:A、看图后你有什么感受?

  B、你能提出哪些数学问题?

  3、对比练习:

  (1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

  思考:A、两种鞋的销售趋势分别怎样?

  B、你有什么建议?

  (3) 出示:两家游泳衣专卖店的销售情况统计图。

  思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

  B、猜猜为什么乐乐专卖店会有这样的销售现象

  四、总结

  你又有什么新收获?你是用什么方法学会的?

  五、课外作业

  省略

五年级下册数学教案9

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的'长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案10

  教学内容:

  义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。

  教学目标:

  1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。

  2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

  3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

  4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

  教学重点:

  培养学生思维的有序性。

  教学难点:

  抽象概括计算规律。

  教学准备:

  计数器,答题纸。

  教学过程:

  一、提出问题:

  师:同学们,数学王国里有十个数字,它们是……

  生:0、1、2、3、4、5、6、7、8、9。

  师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。

  出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?

  师:问题提出来了,敢不敢迎接挑战?

  生:敢!

  师:谁来说说,你是怎么理解“没有重复数字的三位数”的?

  生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。

  师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的.答案写在练习本上,咱比一比,谁写的又准确,速度又快。

  二、研究问题:

  1、解决问题:

  (学生尝试解决问题)

  师:同学们写完了,哪位同学愿意展示一下你的答案?

  生:(投影仪展示)123,321,213,132,321。

  师:还有其他的写法吗?

  生:(投影仪展示)123,132,213,231,312,321。

  师:两种写法,你认为哪一种更好?

  生:第二种更好。

  师:为什么?(学生茫然)同桌讨论一下。

  生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。

  师:观察第二种写法有重复或遗漏吗?

  生:没有!

  师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。

五年级下册数学教案11

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

   (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的.油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

五年级下册数学教案12

  【教学内容】

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  【教学目标】

  1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2.知道100以内的质数,熟悉20以内的质数。

  3.培养学生自主探索、独立思考、合作交流的能力。

  4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【教学重难点】

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  【教学过程】

  一、复习导入

  1.什么叫因数?

  2.自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1.学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2.教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3.出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的倍数,再排除掉3 的`倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表

  三、课堂作业

  完成教材第16页练习四的第1~3题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  【板书设计】

  质数和合数

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  【教学反思】

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案13

  教学目标

  1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3.进一步提高学生的统计技能,增强学生的统计意识。

  教学重难点

  教学重点:认识众数,理解众数的意义及作用。

  教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

  教学过程

  (一)复习旧知

  1、回忆平均数及中位数的求法,指生回答。

  2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

  (二)完成例1

  1.出示例题:

  五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

  1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

  师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

  2.学生小组合作选择10名队员。

  3.根据学生汇报,师课件随机演示选择结果。

  平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

  +1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

  +1.52+1.52+1.52+1.52)÷20

  =29.5÷20

  =1.475

  中位数=(1.48+1.49)÷2

  =2.97÷2

  =1.485

  接近1.485m的同学人数太少,不适合大多数同学的

  身高。最高的与最矮的相差6cm。

  这组数据的中位数是1.485,身高接近1.485m的比较合适。

  身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

  1 . 52出现的次数最多,最能应这组同学的身高情况.

  4.小结:以众数1.52为标准选择队员身高会比较均匀。

  师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

  5.师生共同归纳众数概念。

  师揭示众数的概念

  一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

  6、做一做,

  7、小练习:

  学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

  求这次英语百词听写竞赛中学生得分的众数.

  三个数据存在的数量和意义:

  比较三个统计量:

  (三)学习众数的特征

  师出示练习题:

  1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

  19 23 26 29 28 32 34 35 41 33 31

  25 27 31 36 37 24 31 29 26 30

  (1)这组数据的中位数和众数各是多少?

  (2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

  2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

  甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

  乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

  (1)甲、乙成绩的平均数、众数分别是多少?

  (2)你认为谁去参加比赛更合适?为什么?

  生先独立思考,再全班交流。

  师:在找三组数据的众数的过程中,你发现了什么?

  生:在一组数据中,众数可能不止一个,也可能没有众数。

  师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

  2、三个数据存在的.数量和意义

  (四)综合练习

  你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

  (五)联系情境,应用众数

  销售衣服问题。

  师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

  师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

  生:讨论交流,发表自己想法。

  师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

  (五)拓展延伸(“生活中的数学”)均码问题。

  师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

  师:课后请同学们调查和了解一下:什么是“均码”?

  (六)全课小结

  教师:同学们,今天我们上了这节课你收获了什么?

五年级下册数学教案14

  教案设计

  设计说明

  1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

  学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

  2.在学生原有的认知水平上促进发展。

  本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

  课前准备

  教师准备 PPT课件

  学生准备 两张完全一样的方格纸

  教学过程

  ⊙创设情境,导入新课

  师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

  (课件出示情境图)

  师:“分数王国”里有哪些数呢?“小数王国”里呢?

  (生汇报)

  师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

  生:和0.06都说自己更大。

  师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

  设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

  ⊙自主探索,学习新知

  1.解决问题。

  (1)课件出示教材7页情境图。

  师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

  (2)大胆猜测,探究比较方法。

  方法一 把分数化成小数来比较。

  =1÷20=0.05,因为0.060.05,所以0.06。

  方法二 把小数化成分数来比较。

  0.06=,=,因为,所以0.06。

  课件展示学生没有想到的画图法,让学生在讨论中理解。

  0.06>

  师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

  2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

  (1)认真读题,明确题目中的“翻译”指什么。

  (2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

  (3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

  3.归纳分数化成小数的方法。

  (1)探究将分数化成小数的方法。

  把下列分数化成小数:

  练习,并思考转化方法。

  (2)小组内交流方法。

  (3)班内反馈。

  要求学生说出转化方法,并讲明转化的原理。

  师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的`分子相当于被除数,分母相当于除数。

  4.归纳“小数化成分数”的方法。

  把0.3,0.27,0.75,0.125化成分数。

  练习,探究小数化成分数的方法。

  师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

  设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案15

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的'学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

【五年级下册数学教案】相关文章:

五年级下册数学教案04-04

五年级下册人教版数学教案01-12

小学五年级下册数学教案01-03

人教版五年级下册数学教案01-09

五年级下册数学教案【热】02-08

五年级下册数学教案【热门】02-13

【精】五年级下册数学教案02-02

五年级下册数学教案15篇01-04

五年级下册数学教案(15篇)01-04

五年级下册数学教案(精选20篇)06-30