六年级上册数学教案

时间:2023-01-09 08:07:07 数学教案 我要投稿

六年级上册数学教案【荐】

  作为一名教职工,就有可能用到教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写呢?以下是小编整理的六年级上册数学教案,希望能够帮助到大家。

六年级上册数学教案【荐】

六年级上册数学教案1

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的'数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

六年级上册数学教案2

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的`实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级上册数学教案3

  新课标人教版六年级数学上册全册教案

  一、教材分析:

  新课标六年级人教版这一册教材主要包括以下内容:《位置》,《分数乘法》,《分数除法》,《圆》,《百分数》,《统计》,《数学广角》和《数学实践活动》等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。

  二、教学目标

  本册教材的教学目标是,使学生:

  1.理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

  2.理解倒数的意义,掌握求倒数的方法。

  3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

  4.掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

  5.知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

  6.能在方格纸上用数对表示位置,初步体会坐标的思想。

  7.理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

  数的简单实际问题。

  8.认识扇形统计图,能根据需要选择合适的统计图表示数据。

  9.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10.体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  11.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12.养成认真作业、书写整洁的良好习惯。

  三、教学重点:分数乘法和除法、圆、百分数。

  四、教学难点:分数乘法和除法、鸡兔同笼问题。

  五、课时安排:

  各部分教学内容教学课时大致安排如下,教学时可以根据本班具体情况适当灵活掌握。

  1、位置(2课时)

  2、分数乘法(12课时)

  3、分数除法(13课时)

  4、圆(8课时)

  5、百分数(15课时)

  6、统计(2课时)

  7、数学广角(2课时)

  8、总复习(4课时)

  第一单元位置

  单元目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  单元重点:能用数对表示物体的位置。

  单元难点:能用数对表示物体的位置,正确区分列和行的顺序。

  1、位置

  教学目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  教学重点:能用数对表示物体的位置。

  教学难点:能用数对表示物体的`位置,正确区分列和行的顺序。

  一、导入

  1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中

  的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的

  方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。

  按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、小结例1:

  (1)确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。

  如果这两个数据的顺序不同,那么表示的位置也就不同。

  3、练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  4、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看

  在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”

  的位置。(投影讲评)

  三、练习

  1、练习一第4题

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、练习一第6题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向

  上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是

  第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、作业

  练习一第1、2、5、7、8题。

  教学反思:

  第二单元分数乘法

  单元目标:

  1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

  2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

  3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

  4、使学生理解倒数的意义,掌握求倒数的方法。

  单元重点:

  分数乘法的意义和计算法则。

  单元难点:

  1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

  2、分数乘法计算法则的推导。

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分

  数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生

  的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步

  感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

六年级上册数学教案4

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

  (1)一个数的3/4等于12.

  (2)男生人数的11/12等于220人。

  (3)甲数的5/8是40.

  (4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  (1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

  (2)指名口头列式计算。

  二、新知探究

  (一)教学例1.

  1、课件出示自学提纲:

  (1)这一例题和复习中的题有什么不同和相同呢?想一想。

  (2)有几个问题?都和哪些条件有关?

  (3)读题、理解题意,并画出线段图来表示题意

  (4)独立解决第一个问题。

  2、全班汇报

  (1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

  (2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

  (3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

  (4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

  (1)启发学生找关键句,确定单位“1”。

  (2)让学生选择一种自己喜爱的.解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

  ①方程解:解:设爸爸的体重是χ千克。

  χ= 35

  χ=35÷

  χ=75

  ②算术解:35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

  (1)一个数的2/5是40,这个数是多少?

  (2)一个数的3/8是24,这个数是多少?

  (3)甲数是100,占乙数的4/5,乙数是多少?

  (4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

六年级上册数学教案5

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题

  题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分析题中的数量关系。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新知探究

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:

  买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。

  解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

  (3)学生试画出线段图。

  (4)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (5)根据等量关系式解答问题。

  (6)解:设航模小组有χ人。

  χ+ χ=25

  (1+ )χ=25

  χ=25÷

  χ=20

  答:航模小组有20人。

  三、课堂小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的`单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、当堂测评

  练习十第4、12、14题。

  学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

  设计意图:

  继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

  教学后记

六年级上册数学教案6

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的.方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学教案7

  教学目标:

  1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

  2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

  3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

  4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

  教学重点

  理解百分率的含义,掌握求百分率的方法。

  教学难点:

  探究百分率的含义。

  教学用具:

  PPT课件

  教学过程:

  一、复习导入(8分)

  1、出示口算题,限时1分钟,并校正题目。

  2、小结学生所提问题,并指名口头列式。

  3、将问题中的`“几分之几”改为“百分之几”,引学生分析、解答。

  4、小结:算法相同,但计算结果的表示方法不同。

  5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

  6、口算比赛:(1分钟)(见课件)

  7、根据口算情况,提出数学问题。

  (做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

  8、尝试解答修改后的问题。

  9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

  10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

  二、设问导读(9分)

  1、说明达标率的含义。

  2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

  3、组织学生以4人小组讨论。

  4、巡回指导书写格式。阅读例题,思考下面的问题

  (1)什么叫做达标率?

  (2)怎样计算达标率?

  (3)思考:公式中为什么要“×100%”呢?

  (4)尝试计算例1的达标率。

  三、质疑探究(5分)

  1、在展示台上展示学生写出的百分率计算公式。

  2、要求学生认真计算,并对学生进行思想教育。

  1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

  2、求例1(2)中的发芽率。

  四、巩固练习(14分)

  1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

  2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

  3、出示问题,指导学生书写格式,并强调

  4、解决问题要注意:看清求什么率?找出对应的量。

  5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

  6、引学生观察、发现:出勤率+缺勤率=1.

  五、加强巩固

  1、说说下面百分率各表示什么意思。(1颗星)

  (1)学校栽了200棵树苗,成活率是90%。

  (2)六(1)班同学的近视率达14%。

  (3)海水的出盐率是20%。

  2、判断。(2颗星)

  (1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )

  (2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )

  (3)把25克盐放入100克水中,盐水的含盐率为25%。

  (4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

  3、解决问题(3颗星)

  (1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

  (2)六(1)班今天有48人到校,有2人缺席,求出勤率。

  (3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

  (4)王师傅加工的300个零件中有298个合格,合格率是多少?

  课堂总结:

  (1分)突出“关键点”。谈谈本节课的收获。

六年级上册数学教案8

  【教学内容】

  教科书第1~3页例1、2,练习——第1~4题。

  【教学目标】

  1.能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。

  2.能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。

  3.培养学生的迁移类推能力和自主探索的精神。

  【教学重、难点】

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

  【教学过程】

  一、欣赏主题图,激趣引入

  教师:同学们,新的一学期开始了,看看愉快的数学之旅又将带我们到哪些新的站点呢?请同学们观察主题图。(多媒体出示主题图)

  教师:认真观察,说说你获得了哪些信息?(学生观察回答)

  你们能根据主题图提出哪些数学问题?

  这些问题你们能试着列出算式吗?它们都是些什么算式?

  (老师随着学生的回答板书相关的连加算式或分数乘法算式)

  这些算式中的数有什么特点呢?

  学生:有的是加法算式,有的是乘法算式,但这些数都与分数有关。

  揭示课题:从今天开始,我们就一起来研究分数乘法。

  [评析:新学期开始的第一节课,通过主题图既调动学生开学学习的积极性,又在主题图的信息中,感受数学与生活的联系。同时,教师又注意引导学生在众多信息中注意搜索与分数乘法相关的信息,为本课时教学作好铺垫。]

  二、探究新知

  1.感知分数乘法的意义。

  (1)复习整数乘法的意义。

  课件展示,并配上声音:每人吃5个饼,4人共吃多少个饼?

  学生列式:5+5+5+55×4

  教师:表示什么意思呢?4个5相加的和是多少?5的4倍是多少?

  (2)分数乘法的意义。

  课件展示例1的情境图:每人吃15个饼,4人吃多少个饼?

  学生尝试列式:15+15+15+1515×4或 4×15

  教师:表示什么意思呢?与整数乘法的意思相同吗?(4个15是多少;15的4倍是多少?)

  2.利用意义探索计算法则。

  (1)教师:15×4该怎样算呢?自己在练习本上试一试。

  全班汇报,说说你得多少,怎样想的?指名学生回答,得出:

  15×4表示4个15相加,4个15就是45。

  (2)试一试。

  45×2=3×14=

  学生在练习本上做好后,集体订正。并请学生说说怎样想的。

  (3)口算(教师即时板书):25×2、5×17、29×4、2×45。

  (4)议一议:这些分数乘法有什么特点?

  结合学生回答板书(分数乘整数),根据刚才的计算,你觉得分数乘整数怎样算?

  根据交流小结:分数乘整数,用整数与分子相乘的积作分子,分母不变。

  3.教学例2。

  (1)出示:38×2 。

  教师:这个乘法会算吗?先自己试一试。

  学生尝试,并适时提问:你在计算过程中遇到什么问题,你怎么解决的?

  教师巡视,发现学生不同的约分方法,并抽学生板书。(学生可能出现:计算结果不约分;先计算出结果再约分;或在计算过程中先约分再计算这三种情况)

  全班交流,指名说说计算过程中遇到什么问题,如何解决的。

  针对三种不同的情况进行评价:你喜欢哪种方法?为什么?

  结合学生交流,老师强调:在分数乘法中,计算结果要化成最简分数。我们可以先将整数与分母约分,再按分数乘整数的方法计算。这样做,计算数据较小,计算更准确。

  (2)练习:29×6=12×34=

  观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的`分母约分。

  集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与分子约分的错误方法,让学生辨析。

  (3)学生再次小结分数乘整数的计算方法。

  现在你能比较完整地总结分数乘整数的计算方法吗?

  结合学生交流,小结方法:先看整数与分数的分母能否约分,能约分的先约分,然后用整数与分子相乘的积作分子,分母不变。

  [评析:从整数乘法的意义自然过渡到分数乘整数的意义,并通过意义探索计算方法,让数学知识前后联系更紧密。同时注重学生计算方法的主动探索,强调数学知识与方法的自主建构,注重学生错误的提前预判。]

  三、巩固练习,反馈提高

  1.课堂活动第1题。学生独立完成,集体订正。教师追问:18×5表示什么意思?

  2.练习——第1~3题。学生独立完成,教师巡视指导学困生,集体讲评。抽1~2题说说计算方法。

  四、课堂小结:

  本节课你有什么收获?关于分数乘法,你还想知道什么?

  [评析:对于分数乘整数的计算法则,教师并没有过多地干预与包办,而是充分的在情境图的基础上,通过整数乘法意义的回顾,经历计算方法的自主探索过程,掌握计算方法。同时,注重独立思考与合作交流的学习方式的运用,让学生真正成为学习的主人。]

六年级上册数学教案9

  教学目标:

  1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。

  3.进一步体会数学与日常生活的密切联系。

  教学重点:

  目标1、2。

  教学难点:

  目标2。

  教学过程:

  活动一、创设情境,引入新知

  笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。

  1.出示平面图。

  2.观察图,说说从图中知道了什么?

  3.思考:比例尺1:100是什么意思?

  (1)独立思考。

  (2)同伴交流。

  (3)汇报。

  得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。

  4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的`面积是多少平方米?

  (1)学生四人小组合作完成。

  (2)汇报交流。

  强调:必须先求出实际的长和宽,然后再算出实际的面积。

  5.笑笑家的总面积是多少平方米?

  (1)学生独立完成。

  (2)集体订正。

  6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。

  (1)理解题意。

  (2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。

  (3)进行计算。

  7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。

  (1)图上1厘米表示的实际距离是多少厘米?

  (2)她画的平面图的比例尺是多少?

  活动二、试一试

  1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。

  (1)理解题意,独立思考。

  (2)交流自己的想法。

  (3)进行计算。

  活动三、练一练

  1.完成32页第2题。

  (1)独立完成。

  (2)汇报交流。

  (3)提出问题。

  2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。

  (1)独立计算。

  (2)汇报,全班交流。

  (3)说说自己的想法。

  活动四、实践活动

  1.找一张中国地图,量一量,算一算。

  (1)量出北京和台北之间的距离是( )厘米,它们之间的实际距离大约是( )千米。

  (2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。

  2.找一张中国地图,用▲表出你家乡的大致位置。

  (1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。

  (2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。

  3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。

  学生可以在家长的帮助下,在家里完成。

  课后小结:说说你今天的收获和问题。

六年级上册数学教案10

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第2~3页。

  【教学目标】

  1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用“数对”确定位置。

  2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

  3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用“数对”确定位置。

  【教学过程】

  一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置

  1.谈话引入。

  今天有这么多老师和我们一起上课,同学们欢迎吗?

  老师们都很想认识你们。咱们先来给他们介绍一下我们班的'班长,可以吗?

  2.合作交流,在已有经验的基础上探究新知。

  (1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

  汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…

  哪个小组也用语言描述出了班长的位置?

  请班长起立,他们的描述准确吗?

  刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)

  看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

  板书:列 行

  老师左手起第一组就是第一列…,横排就是第一行…

  班长的位置在第4列、第3行。

  还有其他的表示方法吗?

六年级上册数学教案11

  教学目标:

  1.通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

  2.经历探索活动,了解反比例曲线图的特征。

  教学重点:

  探究长方形面积不变时,长与宽的关系。

  教学难点:

  发现表示反比例曲线图的特征。

  教学过程:

  一、旧知铺垫。

  1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

  2、你还记得表示积一定,两个乘数之间的'关系图吗?把积是12的方格圈起来,可以连成什么线?

  3、说一说。

  (1)两个乘数的变化情况。

  (2)两个乘数成什么关系?

  (3)你有什么猜想?

  二、探索新知。

  用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。

  x/cm 1 2 3 4 6 8 12 24

  y/cm 24 12 8 6 4 3 2 1

  1、说一说长与宽的变化情况。(小组交流)

  2、这里哪个量一定?

  3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

  板书:长×宽=长方形面积(一定)

  4、根据上面的数据,在方格纸上画出8个长方形。(每格代表1 cm2)

  过程要求

  (1)出示方格纸,并标明X、Y轴上的数字。

  (2)教师边讲解,边画长方形。

  (3)学生接着画。(直接在课本上完成)

  5、连接图中的点A,B,C,D……

  (1)猜一猜:图中的点A,B,C,D……在一条直线上吗?

  (2)师生一起连线,验证自己的猜想。

  三、课堂小结

  说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。

  四、巩固练习

  面包的总个数不变,每袋装的个数与袋数如下表。

  每袋个数2 3 4 6 8 12 24

  袋数12 8 6 4 3 2 1

  (1)每袋个数与袋数有什么关系?说明理由。

  (2)把上面的数据制成图表。

六年级上册数学教案12

  学习内容

  教科书第55页例3及课堂活动第3题,练习十五第8~11题。

  育人目标

  1.学会借助线段图等方法分析较为复杂的现实问题。

  2.能考虑现实情况应用不同的策略解决问题,掌握一些策略性的知识。

  3.培养学生的发散思维能力,形成解决问题的基本策略,以及团队协调合作的能力,同时对学生进行诚信教育。

  4.在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  掌握一些解决问题的方法和策略性的知识。

  学习评价设计

  1.学生在思考、讨论中归纳出按比例分配解决问题的方法。

  2.运用归纳的知识解决实际问题。

  教学过程

  情境引入

  1.同学们,在日常生活中常会出现团队合作的情况。(让学生先简要交流课前了解的信息:人们一起合伙运货、租房等,如何协调付费的情况。)

  2.教师用课件呈现:三人需要用同一辆车运送同样多的'货物共需90元,当车走到路程三分之一处,出现甲卸货,到路程的三分之二处,出现乙卸货,到终点是丙卸货。

  教师提出问题:他们如何分摊运费?请学生提出自己的想法。

  学生可能会提出:

  ①们运的货物同样重,把运费平均分配。

  ②尽管他们的货物一样重,但因为他们运的路程不一样。甲运的路程短应该少付,丙运的路程长应该多付。

  ③按照路程的长短按比例分配的办法来分摊运货的钱。

  ④能不能把运费分成每段30元,第一段由三人共同分担,第二段由乙和丙两人分担,第三段只有丙一个人承担,这样比较公平。

  ……

  以上方案中你认为哪一种比较公平?

  学生经过讨论会认为:平均分的方案不公平,因为甲运的路程短,却要和路程最长的丙付同样多的钱,这种方案在现实中不容易被接受。按比例分配或按每段路程来分摊钱的办法可以让运货路程短的付较少的钱,而运货路程长的付较多的钱,这样相对比较公平。

  抽生交流课前了解的信息。

  学生提出自己的想法

  讨论交流哪些方案才是公平的。

  在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  合作探究

  1.请选择自己认为比较公平的办法,把解决问题的方案和结果写出来。

  教师巡视,给予指导。

  2.交流汇报,展示学生解决问题的方案,要求汇报时阐明自己的解题思路。

  方法1:按路程比例分摊。把路程平均分成三段,甲行了一段付一份钱,乙行了两段路程付两份钱,丙行了三段路程应付三份钱。

  根据各人所行路程的段数,把钱一共分成:1+2+3=6(份)。

  其中甲占90的:90×1/6=15(元)

  乙占90的:90×2/6=30(元)

  丙占90的:90×3/6=45(元)

  答:甲应分摊15元的运费,乙应分摊30元的运费,丙应分摊45元的运费。

  方法2:按路程段数分摊。

  每一段的运费:90×1/3=30(元)

  第一段的运费甲、乙、丙三人分摊:

  30÷3=10(元),每人付10元。

  第二段运费由乙、丙两人分摊:

  30÷2=15(元),每人付15元。

  第三段运费由丙一人付30元。

  所以三人分摊的运费是:

  甲:10元

  乙:10+15=25(元)

  丙:10+15+30=55(元)

  答:甲应分摊10元的运费,乙应分摊25元的运费,丙应分摊55元的运费。

  3.对方案中存在的疑问可以组织学生进行辩论:如果你是甲,你会接受哪种方案?为什么?如果你是丙呢?

  独立设计公平的分摊方案。

  交流不同的解题思路。

  讨论交流,体验实际意义。

  在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  巩固应用

  1.课件出示情境。

  小强家房子出租给小李、小张、小王三个年轻人,每月房租是630元。6月份,小李只住到10日就搬走了,小张只住到20日也搬家了,小李和小张离开时都留给小王210元的房租。到月底小强的妈妈要去收房租了,如果你是小强,你会建议妈妈怎样收这三个年轻人的房租比较合理?

  由学生先提出方案,然后自己拟订方案解答。

  方法1:

  小李应付的房租:630×10/30x1/3=105(元)

  小张应付的房租:630×(10/30x1/3+10/30x1/2=210(元)

  小王应付的房租:630×(10/30x1/3+10/30x1/2+10/30)=315(元)

  方法2:

  630÷3=210

  小李:210÷3=70(元)

  小张:70+210÷2=175(元)

  小王:70+210÷2+210=385(元)

  请学生再思考:如果你是小王,你会怎样付房租?

  同时对学生进行诚信教育。

  2.课件出示:在方格纸上涂色设计图案(课堂活动第3题)。

  学生读懂题意后,让学生自选颜色,设计图案。然后再算出各种颜色所涂格子数的比,这样就把问题归结到按比例分配的问题上来,然后让学生自己去解决。

  先提出方案,然后自己拟订方案解答,最后全班交流自己分摊方法。

  讨论交流。

  独立理解题意,自选颜色设计图案并解答。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感,对学生进行诚信教育。

  课堂小结

  今天你学到了哪些解决问题的办法?

  谈收获。

  课堂作业

  练习十五第8~11题。

  思考题:参加比赛的人数应该是7的倍数(3+4=7),又因为参加比赛人数在160-170人之间,所以参加比赛的人数可能是161人或168人。

  独立完成。

六年级上册数学教案13

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的`倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:0.2的倒数是多少?

  五、小结:请学生说一说这节课学习了哪些内容。

  六、作业:练习五3—8。

六年级上册数学教案14

  学习内容

  教科书第54页例1,课堂活动第1题,练习十五第1~3题。

  育人目标

  1.在实际情境中理解按比例分配的意义。掌握按比例分配解决问题的方法,能正确解决简单的按比例分配的问题。

  2.经历探索按比例分配解决问题方法的产生过程,培养学生的分析问题、解决问题的能力。

  3.通过自主学习等活动发展学生自主探究的意识,渗透转化的数学思想,并从中感受数学与生活的密切联系。

  4.在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  1.能正确运用按比例分配的方法解答简单的数学问题。

  2.正确解决按比例分配的实际问题。

  学习评价设计

  1.学生思考用不同的策略来解决问题。

  2.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  教学过程

  情境引入

  同学们都有买文具的经历,请看大屏幕(实物投影出示与学生生活紧密联系的实例)几个同学凑钱批发文具,我们来看看他们是怎样买的?

  ①李芸和张倩各拿出8元钱,一共买了10支水彩笔。他俩该怎么分这些笔?

  学生回答后,教师及时做出评价,板书教学。

  ②这儿还有两个同学,也批发了一些文具,陈红拿出6元,赵青拿出4元,一共买了15本同样的笔记本。(指导学生读题)

  这两个同学怎样分这些笔记本?

  学生说出自己的想法,教师组织评议。

  小结得出:按拿钱的多少来分配笔记本最合理,这种分配方法通常叫做按比例分配。(板书课题:按比例分配(一)

  学生口答,独立思考,再交流:

  生:平均分,一人5支。

  生:陈红多点,赵青少点。

  在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  探究新知

  1.理解按比例分配的意义。

  把10支水彩笔平均分给两个同学,为什么要平均分呢?让学生理解,因为两人拿出的钱数同样多,也即拿出的钱数比是1:1,所以要平均分。

  陈红和赵青分笔记本,为什么不平均分呢?

  组织学生思考交流,因为两人拿出的钱数不一样多,再平均分是不公平的。要做到公平,应根据出钱多少来分配才合理。两人拿出的钱数的比是3:2,那么,15本笔记本应按3:2分配。

  最后,教师指出:像这样把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

  2.例举身边的事例,进一步理解按比例分配的意义。

  生活中还有很多这样的例子,需要把某一物品按照一定的比来进行分配,比如:实物投影出示物品配料标签。

  (1)某配方奶粉调配时,奶粉和水的.比为1∶7,按照这个调配建议,我们在冲奶粉时能平均放奶粉和水吗?

  (2)市场上出售一种5升装的混合油,其中橄榄油与花生油的比是1∶1,这是一种什么样的分装方法?这5升油中,花生油有多少升?

  (组织学生分组讨论反馈.

  交流后,教师及时做出评价)

  你们在生活中有没有遇见这样的例子?介绍给大家听听。(学生举例)

  3.学习例1。

  同学们理解了什么是按比例分配,下面(第54页例1)大家开动脑筋,帮助陈红和赵青分一下笔记本,看看谁分配得最合理,分配的方法最容易操作!

  (1)学生独立思考、计算,教师巡视指导

  (2)反馈学生做法,集体分析解法。

  方法1:陈红、赵青拿出钱数的比是:6∶4=3∶2

  解:设每份是x本。

  3x+2x=15

  5x=15

  x=3

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法2:先求出每份是多少本,再分别求出两人应分的本数。

  15÷(3+2)=3(本)

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法3:总份数是3+2=5,因为陈红应分的本数占15本的,赵青应分得本数占15本的,所以:陈红应分的本数:15×=9(本)。赵青应分的本数:15×=6(本)。

  答:陈红应分9本,赵青应分6本。

  学生交流解法,并说明解题思路。通过评价,鼓励学生用不同的策略来解决问题。

  (3)同学们想出了这么多不同的方法来解决问题,真棒!可是你们如何证明自己的解法是正确的?(引导学生用不同的方法进行检验)

  方法1:把求得陈红、赵青所分到的笔记本数加起来,看是否等于总数15本。

  方法2:把陈红、赵青所分到的笔记本数写成比的形式,看化简后是不是等于3∶2。

  (4)引导反思:这道题有什么特点?我们是怎样解决的?

  特点:把15本笔记本作为总量,按照给定钱数的比进行分配,像这种方法:用份数的思路解答;用分数的思路解答;用方程解答。

  如果按1∶1分配,是怎样分?

  指出:平均分是按比例分配的特例。

  独立思考再交流理解为什么要平均分。

  结合生活实例讨论交流理解按比例分配的实际意义。

  举例交流。

  学生独立完成再汇报交流不同的解题思路。

  用不同的方法进行检验。

  反思交流按比例分配这类型的特点及解题方法。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  巩固练习

  1.练习十五第1题(学生交流解法,并说明解题思路,并鼓励学生用不同的策略来解决问题。)

  2.学生独立完成练习十五第2、3题,完成后用投影仪集体订正。

  3.课件出示课堂活动第一题(阅读资料,结合自己班的人数,设计一个合适的比,将全班学生分成两部分来参加两项公益活动,然后全班交流。)

  学生独立完成,再交流不同的解题策略。

  课堂小结

  同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)在这么多解决问题的方法中,你最喜欢哪一种?为什么?

  谈收获。

六年级上册数学教案15

  教学目标:

  1、知识和能力:能在方格纸上按要求将图形按一定的比放大或缩小。能在方格纸上准确建立一个点和一个数对得对应。理解图形按相同的比扩大或缩小的实际意义。

  2、过程和方法:结合具体情境,通过观察、操作、思考、交流、展示等活动,体会图形按相同的比扩大或缩小的实际意义。

  3、情感态度和价值观:使学生在研究图形的放缩的过程中,初步感受图形的相似。感受学习比例尺的必要性。欣赏图形的美感。

  教学过程:

  一、创设情境,激趣导入

  出示照片:集体照

  师:谢老师想把咱们班的集体照放进想框里,怎样把它放进去呢?(复制粘贴)

  师:看着这张照片,有什么感觉?

  师:是的,生活中有很多缩小和放大的现象,今天我们就一起来研究图形的放大与缩小(投影出示课题:图形的放缩)!

  二、笑脸图大变身

  1、初步感受图形的放缩

  师:(出示1张贺卡图片)这是一张贺卡,(边说,边操作,得到的三张贺卡)与原来的贺卡相比,怎么样?

  生:一样(不一样)。

  师:看完之后,你想说点儿什么?你认为哪一张跟原图最像?为什么?(记住和原图比:都是长方形的,是长变了还是宽变了?)

  学生小组讨论,发言。

  2、深入探究图形的放缩

  师:为什么同样的贺卡,在进行了变化之后,有的与原图相像,有的不像呢?接下来我们就来研究这其中的'奥秘。(教师出示将方格图照贺卡图片。)

  师:请大家认真观察,并结合相关数据思考并分析:谁画得像?为什么?

  请代表把你们刚才交流的想法与大家分享。

  代表发言,集体指正。

  师:看来只有长和宽都按照相同的比来画,才能画得和原图相像。

  (说明:教师根据学生的发言适当的板书写出比。)

  【设计意图】通过引导学生结合教材中的三幅图研究所画图的长和宽与原图的长和宽有什么关系,让学生体会只有按照相同的比来画,画的图才像。在此过程中,让学生初步感受到比例尺产生的必要性和它的实际意义。让学生在操作活动中领悟图形放缩的规律和奥秘。

  三、画一画

  师:有了图形放缩的经验,接下来我们要画一画。拿出自己的作业纸,自由设计图案,并将图形进行一次放大或缩小,画完后,在四人小组里面把你自己画的情况、画的方法向组内同学介绍一下,同时告诉大家你所画的这个图长和宽与原图的长和宽的比分别是多少。开始吧。(作业纸上分别有长方形、正方形和三角形)

  活动后,教师引导学生进行集体展示、反馈。

  【设计意图】大胆放手让学生独立完成画图过程,培养了学生灵活的思维能力,提高了学生创造思维的能力。学生在思考中去操作,在操作后再思考,不但形成了技能,而且对图形的放大与缩小有一个完整的认识。

  四、生活中的应用

  师:今天我们大家一起研究了图形的放缩,请同学们想一想,你知道日常生活中有哪些地方会应用到图形放缩的知识呢?

  【设计意图】让学生感知在生活中,把物体放大或缩小的现象是经常遇到的,学习并运用这些数学知识可以给生活和工作带来很大的方便。

  五、神奇的小猫

  师:看来同学们是非常留心生活中的数学,现在,老师要和大家一起到游戏中去体会图形的放缩。(出示探究活动)

  师:这是一只名叫乐乐的小猫。根据我们学过的数对的知识,你能将表示小猫乐乐轮廓的点的数对正确的填写出来么?(可尝试标出相应的坐标图,便于找出具体的位置)

  教师指名补充表示小猫乐乐轮廓的点的数对。

  师:小猫家族中还有三只小猫:天天、晶晶和欢欢,(表格中呈现名称)请你根据具体的要求讲表示它们轮廓的点填写在表格中,并观察数对的规律,猜一猜:哪只小猫最像乐乐?之后通过在方格纸上描点、连线来验证自己的猜测。

  学生活动、探索。

  汇报展示(说一说你的猜测、依据以及验证结果)。

  【设计意图】本环节结合具体的活动和实例,贴近学生的生活经验,设计了“神奇的小猫”的探究活动,通过在方格纸上画小猫图,以及讨论哪只小猫长得更像乐乐,使学生充分的感受到比例尺的广泛应用。

  六、小结

  今天我们在活动和游戏中体验了图形的放缩,下课后就请同学们到生活中继续去体验生活中的放大与缩小。

【六年级上册数学教案】相关文章:

六年级上册数学教案09-29

【推荐】六年级上册数学教案01-06

六年级上册数学教案【热】01-06

六年级上册数学教案【推荐】01-08

【荐】六年级上册数学教案01-08

【精】六年级上册数学教案01-08

【热门】六年级上册数学教案01-08

【热】六年级上册数学教案01-08

人教版六年级上册数学教案01-08

六年级上册数学教案【热门】01-08