- 相关推荐
北师大六年级上册数学教案
作为一名人民教师,时常要开展教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写呢?以下是小编为大家收集的北师大六年级上册数学教案,希望对大家有所帮助。
北师大六年级上册数学教案1
教学内容:
课本第91页例4、“试一试”和“练一练”,练习十五第1~3题。
教学目标:
1.使学生在具体情境中理解“求一个数是另一个数的百分之几实际问题的数量关系,掌握这类实际问题的解题思路和解题方法,能正确解决相关的实际问题。
2.使学生经历解决求一个数的百分之几实际问题的过程,进一步积累解决问题的经验,培养分析问题、解决问题的能力,发展数学思维。
3.使学生进一步体会现实生活中的百分数问题,感受探索问题的成功,培养独立思考、主动交流的学习习惯。
教学重点:
解决求一个数是另一个数的百分之几的实际问题。
教学难点:
理解求一个数是另一个数的百分之几实际问题的数量关系。
教学准备:
课件
教学过程:
一、创设情境
1.激活旧知
(1)解答下列问题。(口答)
一根铁丝长6米,一根铜铁丝长8米。
①铁丝长是铜丝的几分之几?
②铜丝的长是铁丝的几分之几?
学生口答,教师板书算式和结果。
提问:解决这类问题用什么方法计算的,是怎样想的?
指出:解决这类问题,可以用除法计算,其中要找准单位“1“的量,单位”1“的数量是除数。
(2)一根铁丝长10米,剪下3米。
剪下的占全长的( ),也就是( )%;
剩下的占全长的( ),也就是( )%;
学生口答。
提问:怎样求剪下的和剩下的各占全长的百分之几?又是怎样得到剪下的和剩下的各占全长的百分之几的?
指出:求出一个数是另一个数的几分之几,在把分数改写成百分之几,就得到一个数是另一个数的百分之几。
2.引入新课
引入:这里问题的结果都有表示一个数是另一个数的几分之几,如果几分之几改写成百分之几,就能表示为一个数是另一个数百分之。这几科我们一起学习求一个数是另一数的百分之几的简单实际问题。
二、尝试交流,探究新知
1.课件出示:让学生说说题中的条件和问题,根据条形比一比三人跑的路程哪个最多或最少。 提问:求李芳跑的路程是王红的百分之几,是把那个量看做单位“1“的量?
引导:怎样求李芳跑的路程是王红的百分之几呢?自己想一想,试着做一做。
学生尝试解答,教师巡视。
集体反馈,让学生介绍自己的方法,教师引导理解并板书。
追问:为什么用4÷5来计算?
引导学生说出那两个量在比,应把哪个来那个看做单位“1”。
小结:求李芳跑的路程是王红的.百分之几,是班王红跑的路程作为单位“1”,解题方法与就李芳跑的路程是王红的百分之几是一样的,用李芳侧路程除以王红的路程,知识最后的结果是要用百分数表示。
2,教学试一试
提问:怎样求王红跑的路程是林小刚的百分之呢?
学生独立解答,指名板演。
交流:这里是怎样计算出71.4%的?
通过讨论使学生明确,当除不尽时,商要保留三位小数,也就是百分号前面保留一位小数。
3.反思归纳
提问:这两个问题是用什么方法计算的?为什么在问题中用王红的路程做除数,而在试一试中用林小刚跑的路程作除数?
小结:求一个数是另一个数的百分之几的解题思路和方法,其实与求一个数是另一个数的百分之几是一致的,可以直接用除法计算,注意找准单位“1”的来那个,用单位“1”的量作除数。
三、巩固练习,深化提高
1.五年级一班有女生44名,男生36名。男生人数是女生人数的百分之几?女生人数是全班人数的百分之几?
2.苗圃种植了一批新品杨树共2450棵,结果死亡了49棵,求这批树苗的成活率。
3.五年级一班今天出勤48人,缺勤2人,求五年级一班今天的出勤率。
4.服装厂有职工250人,今天出勤248人,分别求今天的出勤率和今天的缺勤率。
5.把25克盐溶解在100克水中,求盐水的含盐率是百分之几。
6.一块锡和铅的合金重45千克,其中铅重27千克,求这块合金的含铅率。
7.电视机厂去年计划生产彩电20万台,结果生产了25万台。完成了计划的百分之几?
8.李兵参加数学竞赛,做对了18题,做错了2题。求李兵的正确率。
9.清水湖春季植树400棵,未成活的有10棵。求成活率。
四、总结
通过今天的学习,你有哪些收获?
五、布置作业
补充习题
北师大六年级上册数学教案2
教学目标:
1、在自主探索学习中理解按比分配的意义,掌握按比分配应用题的结构特点以及解题方法,能正确解答按比分配应用题。
2、培养学生分析问题、解决问题的能力。
3、创设民主和谐的学习氛围,在关注培养学生主动的探索意识的过程中形成积极的学习情感,通过对多种方法之间联系的探究,渗透数学的转化思想。
教学重点:
进一步沟通倍数、份数、分数、比之间的本质联系,理解按比例分配应用题的结构特征和解题方法。
教学难点:
运用按比分配的知识解决实际问题。
一、复习意义
1、六年级二班有30人,六年级三班有24人,你想到了什么?
预设: 30+24= 和 30—24= 差
30÷24= 倍数 比 30:24= 5:4
你们看,我们可以把一个分数转化成份数和比,看来分数、份数、比之间存在着紧密联系,它们可以相互转化。
二、 出示情景,设计分配方案。
1、学校为六年级二班、三班学生配备了课外书,已知二班有学生30人,三班有学生24人,你认为应怎样分配比较合理?
学生讨论分配方案
(1)预设:平均分。
按人数的多少分配比较合理
(2)讨论:你认为哪种方案更公平?
(3)按人数分,也就是按几比几分呢? 30:24
是最简比吗?
30∶24= 5∶4
【在日常生活中很多分配问题并不是平均分,常常需要把一个数量按照一定的`比进行分配,这就是按比分配。】
板书课题:按比分配
2、出示例题:如果学校准备了这种儿童读物90本,二班和三班人数的比是5:4,
每个班级各应分配多少本?
3、学生试做。
要求:
(1)自己动笔试算,画出简单的分析图或用文字说明你的思路。
(2)想办法验算。
(3)组内交流你是怎么想的。
4、课堂反馈
预设:
① 5+4=9 90÷9×5=50 90÷9×4=40
说明:学生验证时可能出现,只是把结果相加得90,就认为是对的,遇到这种情况要组织学生讨论。
② 5+4=90 90×5/9=50 90×4/9=40
③ 90÷(1+4/5)=90×5/9=50 90-50=40
或 90÷(1+5/4)=90×4/9=40 90-40=50
5、沟通联系。
(1)比较两种解题思路有什么不同呢?
分别想一想,5/4、4/5、4/9等分数分别表示的什么关系?(小组讨论)
反馈:5/4、4/5表示的是两个班份数与份数之间的关系,4/9、5/9表示的是六(2)(3)班与总份数之间的关系,不管哪种方法都是求9份中的4份、5份是多少?
第一种算法实际上是把比转化成了份数,先算出1份数,再分别算出几份数,第二种算法实际上是把比转化成了分数,先找出各部分量分别占总量的几分之几,再用求一个数的几分之几是多少的方法进行计算。
三、巩固方法、完善认知。
1、我校合唱队共有学生48人,男,女生人数的比是1∶3,男生、女生各多少人?
2、用200立方厘米的橡皮泥捏等底等高的圆柱和圆锥各一个,捏之前怎么分配橡皮泥呢?圆柱、圆锥各需要橡皮泥多少立方厘米
3、上个月支出的3600元中,用于伙食费、还房贷和其他方面的钱数的比是5:4:3,伙食费和还房贷一共要用多少元?
A、3600×+3600× B、3600÷(5+4+3)×(5+4)
C、3600× D、3600÷
4、用长120厘米的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体的长、宽、高分别是多少?体积是多少?
5、世界三大饮料茶叶、咖啡和可可消费总量的 比是8∶12∶7 ,全世界茶消费总量大约是400万吨,其他两种饮料的消费量各是多少万吨?
【提示:先自己读一读题目。想一想此题与前几道题的区别。
【找准所给已知量与它相对应那个份数(分率)。】
作业:12周岁的儿童头部与以下部分的高度比一般是2:13回家测出你的身高,算算自己头部的长度,看看你估计得准不准。
四、谈谈这节课你的收获(数学思想等)。
板书设计:
按比分配
4+5=9 4+5=9 转
90÷9×5=50(本) 90×=50(本) 化
90÷9×4=40 (本) 90×=40(本)
答:六年级二班应分配50本,三班应分配40本。
北师大六年级上册数学教案3
教学内容:
苏教版义务教育教科书《数学》六年级上册75页例1、练一练,第76页练习十二第1~5题。
教学目标:
1.使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2.使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3.使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:
分数四则混合运算的运算顺序。
教学难点:
运用运算律和运算性质进行简便计算。
教学准备:
多媒体课件。
教学过程:
一、复习引入
做练习十二第1题,直接写出得数。
集体交流,选择几题让学生说说算法。
二、创设情境,探究新知。
1.出示教科书第75页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2.集体交流。教师根据学生的回答板书算式。
2/5×18+3/5×18 (2/5+3/5 )×18
追问:列式时你是怎么想的?
3.指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)
三、教学分数四则混合运算的`运算顺序。
1.谈话:根据以上计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
你会计算上面这两道式题吗?
4.做“练一练”第1题。
提问:这两题的运算顺序是怎样的?同桌相互说一说。
学生独立计算,指名板演。
集体校对,共同评议。
提问:在进行分数四则混合运算时,你认为要注决些什么?
指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。
四、教学把整数的运算律推广到分数。
1.引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2.做“练一练”第2题。
先让学生独立计算,指名板演。
集体交流,说说哪里用了简便算法,分别是怎样想的。
小结:简便 运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。
五、巩固练习。
做练习十二第3题。
让学生独立练习,指名四人板演。
交流:每道题是哪里用了简便计算,依据是什么?
六、全课小结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
七、作业布置
补充习题相对应页。
学生分别计算,并指名板演。
2.提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?
3.小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
北师大六年级上册数学教案4
教学方案:
教学环节教学预设
一、问题情境
1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。
师:同学们,看老师手里拿的是什么?
生:钥匙。
师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?
生:密码锁
师:谁知道什么地方或物品上经常用密码锁?
学生可能说出:保险柜、保险箱、旅行箱,等等。
师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁
学生可能会说:
我在旅行箱上见过三位数的密码锁。
我在保险柜上见过六位数的密码锁。
有的保险柜上的密码锁是8个数字。
2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?
学生可能会说:
不怕丢钥匙。
能够保密,别人不知道密码开不了,也不能仿制。
……
师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。
板书:数字密码锁
二、探索密码锁
1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。
师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?
学生写密码,然后交流,得出:
用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09
板书:0打头——10个
师:再用1打头,写一写可以组成几个密码?
学生写完后交流,得出:
用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19
板书:1打头——10个
师:想一想,用2打头,可以组成几个密码?
生:10个。
2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?
生:分别可以组成10个
师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?
生:一共可以组成100个。
教师板书:10×10=100(个)
3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?
教师板书:10×10×10=1000(个)
师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。
学生先自己推算,教师巡视,个别指导。
4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?
学生可能有以下说法:
组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。
如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)
同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)
用0、1、2、3、4、5、6、7、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)
用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)
只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。
5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?
生:他得一个一个地试。
师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。
学生算完后,交流计算结果。
1000×10÷60÷60≈2.7(时)
6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?
学生汇报计算结果。
1000000×10÷60≈16666(分),
16666÷60≈277(时),
277÷24≈11(天)
师:可见,数字密码锁具有很强的`安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。
三、汽车牌照问题
1.让学生自己读书并解答。交流时,说一说是怎样推算的。
师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?
学生试算,教师巡视。
师:谁来说一说你是怎样想的?怎样计算的?
生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。
四、电话号码问题
提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。
师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。
同桌讨论,试做。
师:谁来说一说你是怎样做的?结果是多少?
学生汇报情况,教师参与。
学生可能会出现以下结果:
由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)
电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。
北师大六年级上册数学教案5
教学目标:
1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。
2、能灵活运用本单元研究得出的知识解答问题。
3、 进一步感受数学的应用价值。
教学重点:
圆的.周长和面积的计算。
教学难点:
综合应用。
教学过程:
一.引入
1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。
2.揭示课题。
二.展开
1.求圆面积的练习
先用小黑板出示P27练习1——2再指名板演,
然后让板演者说说计算过程。最后再次复习圆面
积在各种条件下的计算公式:S=πr2=π()2
2.综合应用。
投影出示P27练习3~4题,先由4人组成小组
进行讨论,并解答,然后在全班同学面前汇报,
特别要说清思考过程,最后,教师讲解。
三.总结
本节课我们复习了什么?
四.作业
课后反思:
教学内容 练习一(2) 课时
教学目标:1.能灵活运用本单元研究得出的知识解答问题。
2.通过图形的组合,发展学生的空间想象能力。
3.进一步感受数学的应用价值。
教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。
教学难点:培养学生的空间能力,提高解决实际问题的能力。
一.复习
1、什么叫半径?什么叫直径?怎样求圆的周长?
怎样求圆的面积?
二.展开绿色圃中
1.练习。
先指名板演,其余同学各自做在草稿纸上,
然后全体师生共同讲评,指出存在的错误,
尤其是做在草稿纸上的同学一定要自己找出
错误的原因和正确的解答过程,小组进行练习。
2.小结。
三.巩固练习
北师大六年级上册数学教案6
教材分析:
“合理存款”是在教学完百分数的意义与纳税、折扣、利率等知识的基础上安排的一节活动课。
活动构成:
1、明确问题。主要围绕“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开,该问题共蕴含着三个关键的信息:本金、可存款年限及资金用途。
2、收集信息。主要包括人民币储蓄存款利率、教育储蓄存款可存的期限以及相应的利率,国债的购买及其利息的计算等。课前,学生可以通过去银行咨询以及查阅相关规定的方式获得信息。
3、设计方案。就是从收集到的信息中筛选出有价值的相关实用信息,设计出具体的、不同的储蓄存款方案。
4、选择方案。即从上述各种可行性方案中选取收益的,化方案合理存款,并计算出到期时的总收入。教材这样编排,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的相关知识,并综合运用这些知识解决实际问题,在学会与人合作、交流的'同时,获得运用数学知识解决问题的思考方法。
活动目标:
1、使学生巩固对存款的认识,了解教育储蓄及国债利率的有关知识。
2、学习综合运用储蓄存款的相关知识解决实际问题。
3、使学生认识到数学应用的广泛性并培养学生的投资意识。
活动重、难点:
使学生能自主探索合理存款的收益问题的方法。
学具准备:
学生每人一台计算器。
一、旧知铺垫,引入活动
1、复习:杨晨用8000元一年期存款的利息买了一台复读机,这台复读机的价格是多少?
8000×2.25%×1×(1—20%)=160元
问:算式中,本金和利息各是多少元?2.25%、20%各表示什么?你是通过哪些渠道或方式了解到的?
2、引入:把暂时不用的钱存入银行,不仅可以支援国家建设,还可以让本钱增值。存款的方式多种多样,不同形式的存款,获得的收益也会不一样。现在有一个问题:妈妈准备给小灵存1万元,供六年后上大学用,同学们计算分析一下,应该选择哪种存款方式收益?为什么?
二、合作学习,探究方案
1、小组合作探究
2、汇报交流
预设:
生1:选择存款期限长的,这样利息会高一些。
生2:定期存款要考虑利息税。
生3:国债和教育储蓄免征利息税,都可以考虑。
生4:国债的利率比教育储蓄的利率相对低一些,可以优先考虑教育储蓄。
师:课本第111页有两个表格,请同学们再次发挥小组成员各自的聪明才智,按照你们的思路设计存款方案,看看哪些方案的存款利息较高。
3、小组合作,设计方案
4、每组交流一种方案,说说这种方案为什么取得的利息高而且合理。
师:(根据汇报)看来每个小组都有自己的合理获得利息的存款方式。根据大家的汇报,老师把各小组化的方案整理了一下,我们一起来看看。
问:对比后,你有哪些想法?如何存款算是合理的?定期存款方案为什么不考虑了?
学生各抒己见。
师:通过探讨,我们知道了存款有许多方式。在生活中,只要我们仔细研究,认真发现,就能获取的方案,让存款合理的获利。
三、活学活用,解决问题
师:刚才同学们所设计的方案是六年后才取这笔钱的。现在,老师这里也有1万元钱,这1万元四年内不使用,四年后可能会随时取出。请同学们为老师设计一个存款方案,使方案获益。
1、学生分组讨论,设计方案。
2、学生汇报,学生评述。
四、活动结束,畅谈收获
1、这节课你有什么感受和收获?
2、你还有哪些需要?
教学反思:
本活动分为课前、课时两部分。课前涉及调查与收集信息活动,这一环节中,学生通过网络、电话以及银行咨询等多种渠道获得了人民币储蓄、教育储蓄以及国债的利率和相关规定,为课时讨论方案、设计方案、和选择方案做好了准备。课时,教师重点结合解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途,促使学生整理信息时更有针对性,并为设计教育储蓄存款方案提供合理的理由。
活动中,学生以小组合作学习方式共同设计方案,教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,他们的收益相对较高。但由于国债和教育储蓄对存期和提取具有一定的限制,所以为了实现本笔存款收益化,在小组合作学习中先后设计出了四种方案,并通过小组汇报形式交流互动,具体算出到期的收入。反馈结果后,教师还让学生充分讨论:如果自己有钱,想怎样投资,在说明理由的过程中培养了学生的投资意识。
【北师大六年级上册数学教案】相关文章:
北师大五年级上册数学教案09-23
北师大版五年级上册数学教案01-03
北师大六年级数学教案01-08
北师大版数学教案01-24
北师大版四年级上册数学教案02-08
北师大二年级上册数学教案01-23
北师大版三年级上册数学教案01-09
北师大四年级上册数学教案03-09
北师大版七年级上册数学教案09-21