六年级人教版数学上册教案
作为一名专为他人授业解惑的人民教师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?以下是小编收集整理的六年级人教版数学上册教案,仅供参考,欢迎大家阅读。
六年级人教版数学上册教案1
一、教材分析:
这一册教材内容包括:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
在数与代数方面,教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。会解决简单的有关百分数的实际问题,是小学生应具备的基本数学能力。
在空间与图形方面,教材安排了位置、圆两个单元。通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;初步认识研究曲线图形的基本基本方法,促进学生空间观念的进一步发展。
在统计方面教材是安排扇形统计图。进一步体会统计在生活和解决问题中的作用,发展统计观念。
在数学解决问题方面,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。
教材安排了两个数学综合应用的实践活动,体会探索的乐趣和数学的实际应用,感受数学的愉悦,培养学生的数学应用意识和实践能力。
二、教学目标:
(一)、知识和能力方面:
1.理解分数乘除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2.理解倒数的.意义,掌握求倒数的方法。
3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题
4、掌握圆的特征,会用圆规画圆;理解圆周率的意义,探索并掌握圆的周长与面积公式,能正确地计算圆的周长与面积。
(二)、过程与方法方面:
5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6、能在方格纸上用数对表示位置,初步体会坐标思想。
7、使学生理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8、认识扇形统计图,能根据需要选择合适的统计图表示数据。
(三)、情感态度价值观方面:
9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、养成认真作业、书写整洁的良好习惯。
三、教学中需要准备的教具和学具:
在前面几册的教师教学用书中,已经介绍了许多教具和学具,其中的一些仍可继续使用,如小棒、方木块、量角器、三角板、直尺、计算器等。结合本册的教学需要,介绍几种使用效果较好的教具和学具,以供参考。
1.圆形纸板作为演示分数计算以及认识圆的教具。可以用硬纸板做成大小相同的圆若干个。拿其中的两个圆形纸板做成如五年级下册教师教学用书第14页介绍的教具,用来演示不同的分数。作为教师演示用的教具要大一些,作为学生操作用的学具可小一些。
2.圆规教学圆的认识时用。教师要准备可以在黑板上画圆的圆规。每个学生也要准备一套自己用的圆规。
3.说明圆面积计算公式用的教具可以仿照教材第68页的图用纸板制作,供教师演示用。另外在本册教材的附录中印有同样的图,学生可以剪下来贴在纸板上,作为操作用的学具。
4.方格作图纸学习位置时用。在本册教材的附录中印有几幅10×10的方格纸,可以让学生剪下来用。
5.其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。如教学位置时在本地区的简易路线图上画上方格子作为教具;教学百分数时,可搜集一些含有百分数表示含量或性能的商品标签作为教具或学具等。教师还可以根据需要自己制作其他适用的教具。
四、教学措施:
1、创设愉悦的教学情境,激发学生学习的兴趣。
2、提倡学法的多样性,关注学生的个人体验。
3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。
4、加强基础知识的教学,使学生切实掌握好这些基础知识。
六年级人教版数学上册教案2
教学目标:
1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。
2、会用线段图分析分数乘法一步应用题的数量关系。
3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。
教学重点:经历“求一个数的几分之几是多少”的问题的数量关系分析过程。
教学难点:掌握“求一个数的几分之几是多少“的解答方法。
教学方法与手段:小黑板、多媒体
教具准备:主题图、小组练习纸
教学过程:
<一>、创设情境,生成问题
师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,20xx年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5.我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)
师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的学习,揭示并板书课题:
<二>、探索交流,解决问题
①、从题目里你知道了哪些信息?需要解决的问题又是什么?
②、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。
师出示课本的线段图。
③、你会表示我国人均耕地面积吗?(生动手画图指名板演)
④、给大家说说你是怎样表示的.?
⑤、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)
(师出示)“求2500的2/5是多少?“ ⑥、你们会算吗?动手试试。(指名板演): 2500x2/5=1000(平方米)
为什么要这样算?还有其它方法吗?(预设:2500÷5×2)
⑦、通过计算知道了20xx年我国人均耕地面积是1000平方米,你知道我国人均耕地面积减少的原因是什么?
结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
<三>、巩固应用,内化提高。
1、一头鲸长28米,一个人的身高是鲸体长的2/35 。这个人的身高多少米?
①、找出单位“1”,谁能解决,动手试试
②、列式解决,讲评。
2、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数20xx只。
3、练习四第3题:让学生先找到单位“1”,再独立列式解答。
<四>、回顾整理,反思提升
师:这节课你们一定有不少的收获吧,谁能说说?
板书设计:
求2500的2/5是多少?2500x2/5=1000(平方米)
教学反思:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
六年级人教版数学上册教案3
设计说明
分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:
1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。
教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。
2.重视对相关概念、性质及某些知识间相互关系的复习。
教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。
3.重视对学生解决问题能力的培养。
教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。
课前准备
教师准备 PPT课件
教学过程
⊙整理复习
1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)
(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。
×= ×= ×18=
÷= ÷= 21÷=
÷= ÷= ×=
①复习分数乘法的计算方法。
(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)
②复习分数除法的计算方法。
[甲数除以乙数(0除外)等于甲数乘乙数的倒数]
③生独立计算。
④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?
(乘法与除法是互逆运算)
(2)结合×和×18复习分数乘法的意义。
(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的.简便运算,与整数乘法的意义相同)
(3)结合÷和21÷复习分数除法的意义。
(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)
(4)复习分数四则混合运算。
①分数四则混合运算的运算顺序是怎样的?
(与整数四则混合运算的运算顺序相同)
②下面各题怎样简便就怎样算,并说一说算理。
+++
15×
+3÷
3.7×+1.3÷
÷
0.5×
2.复习倒数的意义及相关知识。
(1)什么叫倒数?0为什么没有倒数?
(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)
(2)写出下面各数的倒数。
5 1
(3)判断下面的说法是否正确。
①一个真分数的倒数一定比这个真分数大。( )
②一个数乘分数的积一定比原来的数小。( )
③一个数除以分数的商一定比原来的数大。( )
3.复习比的意义及相关知识。
(1)(出示课件)说出下面每个比的前项、后项。
2∶5 0.6∶0.3
(2)结合上题,复习比的意义及比的各部分名称。
(两个数相除又叫做两个数的比,比号前面的数叫做比的前项,比号后面的数叫做比的后项)
(3)复习比值的意义及求法。
(比的前项除以比的后项,所得的商叫做比值)
(4)复习比与分数、除法的关系。
(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)
六年级人教版数学上册教案4
1.教学设计学科名称
新课标人教版小学数学六年级上册《圆的认识(一)》
2.所在班级情况,学生特点分析
适用于中等学生
3.教学内容分析
教材第2—4 页
4.教学目标
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
5.教学难点分析 掌握圆各部分名称以及圆的特征,借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
6.教学课时 一课时
7.教学过程
一 、创设情境,生成问题:
谈话引入:今天非常高兴能和同学们一起来学习、研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗? 师(检查课前准备):看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗? 师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(留给学生充分的思考交流的时间) 师:同学们观察得真仔细。圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)
二、探索交流,解决问题:
1、教师引导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(留时1 分钟)
2、师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征 师问:谁来告诉老师,你有哪些新发现?你怎样发现的?(大约 8 分钟) 结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
4、学习画圆(5 分钟)。 师问:你是如何画圆的?(指名回答) 课件展示如何画圆,然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆的大小位置的确定:圆心确定圆的位置,半径决定圆的大小。 出示:学校要修建一个直径是20 米的花坛,你能帮学校画出这个圆吗?生演示操作
三、巩固应用,内化提高:
1、基本练习(4 分钟)
〈1〉投影出示:找出下列圆的半径、直径 〈2〉半径、直径的相关计算 〈3〉概念的判断和识别
2、应用练习。(10 分钟)
〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示 〈2〉你能用今天学习的圆的知识去解释一些生活现象吗? a:举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么? b:平静的湖面扔一小石子,会有什么变化?为什么? c:月饼为一般都做成圆形的,为什么? 小结:看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
3、游戏(猜谜语):
师:同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语:有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面) 问题一:羊吃草的情况与今天学的'知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆。) 问题二:拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径) 问题三:钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心) 问题四:如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大) 问题五:如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置), 问题六:这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)
四、回顾整理,反思提升:
1、质疑 (篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)
2、这节课你都学会了什么? 不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)
3、延伸:
1、用圆作画。
2、谈谈你眼中的圆。 板书设计: 圆的认识——平面曲线图形 圆心(o) 圆中心一点 确定圆的位置 半径(r)线段 连接圆心到圆上任意一点 确定圆的大小 长度都相等〈在同一个圆里〉 直径(d)线段 通过圆心 两端都在圆上 长度都相等 〈在同一个圆里〉 半径和直径的关系 d=2rr=d/2
六年级人教版数学上册教案5
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的'水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
六年级人教版数学上册教案6
教学目标:
1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。
3、在解决问题的过程中体会百分数与现实生活的密切联系。
教学重点:
在具体的情境中理解“增加百分之几”或“减少百分之几”意义。
教学难点:
能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的'能力。
教学关键:
充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。
教学过程:
一、复习引入
1、复习
师:关于百分数,你们已经学过那些知识?
指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书
百分数的意义
小数、百分数、分数之间的互化
百分数的应用
利用方程解决简单的百分数问题
2、引入
师:从这节课开始,我们继续学习有关百分数的知识。
二、探索新知
1、创设情景,提出问题
盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?
根据这一情景,你能获得哪些信息?
指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。
师:你认为“增加百分之几”是什么意思?
指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”
师:你能独立解决这一问题么?那就请你试一试。
2、自主探索解决问题
(1)自主探索。
让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。
( 2)合作交流。
指名板演,学生可能会提供以下两种算法
方法1:(50-45)÷45
=5÷45
≈11%
方法2:50÷45=111%
111%-100%=11%
全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识
方法1:先算增加了多少立方厘米,再算增加了百分之几。
方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。
3、即时练习。
先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。
三、巩固练习
指导学生完成课本练一练中的第1题至第5题。
免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。
六年级人教版数学上册教案7
教学内容:
P76-77练习十二第6-11题。
教学目标:
1.进一步掌握分数四则混合运算的顺序,并能灵活运用所学规律和定律进行简便计算。
2. 提高学生运用所学知识解决问题的.能力。
教学重点:
四则混合运算的运算顺序。
教学难点:
能运用所学规律和定律进行简便计算。
课前准备:
小黑板
课时安排:
1课时
教学过程:
一、直接写出下面各题的得数。
6/7÷6/11 1/9×3 1÷2/3 3/4÷3/5
11/6×3/11 4/9÷3/8 24×5/6
二、完成练习十二第6-11题
1.完成第6题
指名学生板演,集体练习评讲。
2.完成第7题左边竖排。
让学生先划出运算顺序,然后独立完成,集体评讲。
3.计算下面各题,能简便的要简便。
4/5×10/3—2/5×10/3 7/8÷3/8—1/8÷3/8 5/9×(18/35—9/40)
指名板演,集体评讲。
4.完成第8题
先让学生独立列出算式,然后解答,集体评讲。
5.完成第9题
学生读题,弄清题意,列式解答。
6.完成第11题
学生弄清题意,找出所需条件,列出算式,解答,师生共同评讲。
三、强化训练
1.在( )里填上适当的分数。
4/5×( )-2/5=2 ( )÷6/25-2/7×7/8=19/4
2.小明是个粗心大意的孩子,在做一道除法算式时,把除数5/6看作5/8来计算,算出的结果是120,这道算式的正确结果是多少?
学生先思考,尝试解答,教师适当点评。
四、本课总结
五、课堂作业
完成第7题第2竖排,第10题。
六、教学思考题。
六年级人教版数学上册教案8
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的'学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
六年级人教版数学上册教案9
单元目标:
1、 理解百分数的意义,了解它在实际中的应用,会正确地读、写百分数。
2、 能够进行小数、分数和百分数的互化。
3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。
4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。
单元重点:
百分数的意义,求一个数是另一个数的百分之几的应用题。
单元难点:
比较复杂的百分数应用题。
课题 百分数的意义和写法
课型 新授课 备课人 授课教师
分课时 第1课时 总课时 总第 课时
教学目标 知识
与技能 使学生理解百分数的意义;能够正确的读写百分数、运用百分数解决简单的实际问题。
问题解决与数学思考 使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力。
情感
与态度 使学生感受百分数在实际生活中的广泛应用,同时结合相关信息对学生进行思想教育。
重点 百分数的意义和写法。
难点 百分数与分数的联系和区别
教学过程 教 学 预 设 个 性 修 改
目标导学 复习激趣 目标导学 自主合作 汇报交流 变式训练
创境激疑 (一)谈话引入,揭示课题。(2分钟)
师:同学们,课前教师让大家收集生活中的百分数,收集到了吗?在哪儿收集的?容易找吗?这说明了什么?
既然百分数这么有用,这节课我们就来学习百分数好吗?你想学习有关百分数的哪些知识?
这节课我们重点学习百分数的意义和写法。(板书课题)
合作探究 (二)探究百分数的意义和写法。(20分钟)
1、百分数的意义
师:请同学们看大屏幕:(出示三杯糖水)
你认为哪杯糖水更甜?
学生争论后得出不好判断的结论。
老师给出三杯糖水中糖的含量:7克、13克、9克。问:这下能判断吗?还需要什么条件?
再给出糖水的重量:20克、50克、25克。问:这下能判断吗?看什么?
生:看糖占糖水的几分之几?
根据学生的回答板书:
师:这样能判断哪个杯更甜吗?怎样就容易看出来了?(通分)
师:百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。(板书)
2、百分数的写法:
师:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(板书)师示范写35%。
请一位学生板演26%、36%,其他学生在本上写。
师生交流:百分数怎样写规范、美观?
①两个小圆圈要写的小一点。②斜线的倾斜程度。
3、由刚才的不好判断,到现在的一目了然,是谁帮了我们的忙?大家在课前已经收集了许多生活中的百分数,你现在能说说这些百分数的具体含义吗?好,下面我们就来交流一下:四人小组交流,说说你收集的百分数,表示什么意思?
(全班交流)谁愿意向大家展示你收集的百分数?说说它的意义。
4、老师也收集了一些百分数,想不想看?
课件出示:读一读
(1)我国的耕地面积占世界耕地面积的7%;
(2)我国人口占世界人口的22%;
(3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;
(4)我国发射人造卫星的.成功率是100%。
这些百分数都表示什么意义,你知道吗?
看了这些信息,你想说什么?
(三)百分数与分数的区别和联系。(5分钟)
1、小组讨论:百分数与分数有什么区别和联系?
2、学生汇报:
学生可能回答: ①分子 ②分母 ③读法 ④意义等的不同。
课件出示:
下面哪个分数可以用百分数来表示?哪个不能?说说为什么?
一堆煤 吨,运走了它的 。
百分数是分数吗?分母是100的分数是百分数吗?
得出结论:分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。百分数是特殊的分数。
拓展应用 1、百分数在我们的生活中无处不在,成语里也有百分数。
课件出示:请将下列词语用百分数表示出来
十拿九稳 百里挑一 百战百胜 一举两得
(设计意图:使学生认识到生活中处处有数学)
总 结 1、这节课你对自己的表现满意吗?用一个百分数表示你的满意程度。
2、对教师满意吗?也用一个百分数表示。
3、最后,教师送给同学们一句名言,与大家共勉。
天才=99%的汗水+1%的灵感。
作业布置 做一做
板书设计 百分数的意义和写法
14% 读作:百分之十四
65.5% 读作:百分之六十五点五
120% 读作:百分之一百二十
课题 百分数与小数互化
分课时 第2课时 总课时 总第 课时
教学目标 知识
与技能 使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的抽象概括能力。
问题解决与数学思考 通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
情感
与态度 学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。
重点 百分数与小数互化的方法,能正确进行两者之间的互化。
难点 归纳百分数与小数互化的方法。
教学过程 教 学 预 设 个 性 修 改
目标导学 复习激趣 目标导学 自主合作 汇报交流 变式训练
创境激疑 一、复习导入
1、百分数的意义是什么?指生回答。
生1:带有百分号的数叫百分数。
生2:表示一个数是另一数的百分之几的数叫百分数。
2、百分数与分数的区别在哪里?为什么要把百分数单独列一单元?
百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。
百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。
3、我们学过了整数、小数、分数、百分数,板书课题
合作探究 二、看到这个课题,你想知道什么?
生1:为什么要转化?
生2:怎样转化?
师:对呀,为什么要相互转化呢?引导学生说出转化的意义。一是便于计算,二是便于比较。(板书),那怎么转化呢?这就是我们今天主要研究的内容。不过,百分数怎么转化成小数,小数又怎么转化成百分数,老师想把讲台让给你们,请同学们来当小老师,让讲台成为你们的舞台。
三、合作探究,学习新知
1、学生自学课本84页(两分钟)
2、小组讨论(三分钟)
3、指生上台汇报,集体交流小数转化成百分数的方法
(1)出示例1:(要求学生讲)
(2)小老师甲:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
3÷5=0.6= =60%
4÷6≈0.667 = =66.7%
(3)小老师乙:请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。而我可以将小数直接化成百分数的。只要把小数点向右移动两位,同时在后面添上百分号就行了。
(4)教师说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
4、师:学到这里也累了,今天要学习的内容学完了吗?(没有,还有百分数转化成小数的方法没学),噢,那我们接着学百分数如何转化成小数的。
(1)出示例2:(要求学生讲)
(2)小老师丙:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
750×20%
=750÷
=750×0.2
=150(人)
750×20%
=750×
=750×
=150(人)
(4)小老师丁:老师,我的方法更简便,能将百分数很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
拓展应用 做一做
总 结 这节课你学会了什么?还有什么不懂的问题?
作业布置 练习十八6、7题
板书设计
百分数与小数互化
例1、3÷5=0.6= =60%
4÷6≈0.667 = =66.7%
例2 750×20%
=750÷
=750×0.2
=150(人)
750×20%
=750×
=750×
=150(人)
六年级人教版数学上册教案10
一、教学内容
比的应用的练习课。(教材第55~56页练习十二第3~7题)
二、教学目标
1.复习巩固按比分配问题的解题方法。
2.进一步培养学生应用知识解决实际问题的能力。
三、重点难点
重难点:会灵活运用按比分配问题的解题方法解决实际问题。
教学过程
一、基础练习
1.师:比的意义和基本性质是什么?(点名学生回答)
2.教材第55页练习十二第5、6题。
(学生独立完成,集体订正)
3.师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)
引导学生回顾按比分配的两种解题方法。
二、指导练习
1.教学教材第55页练习十二第3题。
(1)组织学生观察图画,理解题意,了解信息。
(2)组织学生小组讨论,如何解决问题。
教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。
(3)交流后,学生独立完成,集体订正。
2.教学教材第55页练习十二第4题。
(1)学生读题,理解题意。
(2)师:已知总棵树和每班的人数,要求各班栽的棵数,应先求出什么?
引导学生明确应先求出各班的人数比,人数比等于棵数比,然后根据按比分配求出各班栽的棵数。
教师提示:两个数的按比分配问题的解题方法同样适用于三个及以上的数的比。
(3)学生独立完成,集体订正。
3.教学教材第56页练习十二第7题。
(1)学生读题看图,理解题意。
(2)师:西红柿的面积可直接用乘法求得,黄瓜和茄子的面积可以怎样求得?
组织小组交流讨论,学生可能有两种回答:
①先求出种黄瓜和茄子的总面积。再根据按比分配问题的解题方法解答。
②先求出黄瓜和茄子占总面积的比,然后用乘法直接根据按比分配分别求出黄瓜和茄子的面积。
(3)学生独立完成,点名学生回答,根据回答板书:
(方法一)西红柿:800×2/5=320(m2)
黄瓜和茄子:800-320=480(m2)
黄瓜:480×2/(2+1)=320(m2)
茄子:480×1/(2+1)=160(m2)
(方法二)西红柿:800×2/5=320(m2)
黄瓜占总面积:1-2/5×2/(2+1)=2/5
茄子占总面积:1-2/5×1/(2+1)=1/5
黄瓜:800×2/5=320(m2)
茄子:800×1/5=160(m2)
三、巩固练习
1.完成教材第56页“练习十二”第8题。(要求学生提出不同的问题并解答)
(答案不唯一)我和爸爸的年龄比:12∶38=6∶19;爸爸与妈妈的年工资比:36000∶(20xx×12)=3∶2。
2.完成教材第56页“练习十二”第9x题。(点名学生板演,其余独立计算,集体订正)
150 t∶60 t∶15 t=10∶4∶1
3.完成教材第56页“练习十二”第10x题。(学生独立完成,同桌订正)
水泥:20×2/(2+3+5)=4(t)
沙子:20×3/(2+3+5)=6(t)
石子:20×5/(2+3+5)=10(t)
4.完成教材第56页“练习十二”第11x题。(小组讨论解决方法并汇报)
120÷4=30(cm)
长:30×3/(3+2+1)=15(cm)
宽:30×2/(3+2+1)=10(cm)
高:30×1/(3+2+1)=5(cm)
四、课堂小结
你有哪些收获?还有什么不明白的地方?
板书设计
比的应用(练习课)
第7题:
(方法一)西红柿:800×2/5=320(m2)
黄瓜和茄子:800-320=480(m2)
黄瓜:480×2/(2+1)=320(m2)
茄子:480×1/(2+1)=160(m2)
(方法二)西红柿:800×2/5=320(m2)
黄瓜占总面积:1-2/5×2/(2+1)=2/5
茄子占总面积:1-2/5×1/(2+1)=1/5
黄瓜:800×2/5=320(m2)
茄子:800×1/5=160(m2)
答:西红柿的种植面积是320 m2,黄瓜的种植面积是320 m2,茄子的种植面积是160 m2。
教学反思
1.本次练习,总的来说学生都能熟练地进行列式计算,但他们还没有达到真正理解利用比的基本性质进行思考解题。究其原因,大概是和一些学生的惰性思维有关。一些学生总认为只要会做就行,没有必要去深究为什么,以至于当新型问题出现时,他们往往不知如何下手。为了改变这种思想,还需要在教学中多注意方法的引导和理解,让其熟练掌握一般方法,能够以不变应万变地去解题。
2.我的补充:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
备课资料参考
典型例题准备
【例题】甲、乙两个仓库有很多货物,先从甲仓库运走80 t货物,甲仓库的剩余货物与乙仓库货物的质量比为3∶2;再从乙仓库运走55t货物,乙仓库剩余货物的质量是甲仓库剩余货物的质量的'1/4。甲、乙两个仓库原来共有货物多少吨?
分析:不变量:从甲仓库运走80吨货物,甲仓库剩余货物的质量不变。
前后变化的分率:
(1)原来乙仓库货物的质量是甲仓库剩余货物质量的2/3;
(2)从乙仓库运走55 t后,乙仓库剩余货物的质量是甲仓库剩余货物质量的1/4。
对应量:甲、乙两个仓库货物质量变化的分率差的对应量是55 t。
解答:甲仓库剩余的货物:55÷2/3-1/4=132(t)
甲、乙原来共有货物:132+80+132×2/3=300(t)
答:甲、乙两个仓库原来共有货物300 t。
解法归纳:解决此类比与分率前后变化的问题,关键是抓住不变量,找出已知量对应的分率,从而用除法解决问题。
相关知识阅读
公侯伯子男,五四三二一。
假有金五秤*,依率要分讫。
【注释】:1秤=15斤,5秤=75斤。
有公、侯、伯、子、男五等官员,想要根据官位高低来分75斤金子,按5∶4∶3∶2∶1的比分完。可以通过按比分配问题的知识求出每种官位分得金子的质量。
六年级人教版数学上册教案11
第一单元:分数乘法
第一课时:分数乘以整数
教学内容:第1~2页,例1及“做一做”,练习一1-7题。
教学目的:
(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
(2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
教学重、难点:(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
(2)引导学生总结分数乘整数的计算法则。
教学过程:
(一)铺垫孕伏
1.出示复习题。(投影片)
(1)整数乘法的意义是什么?
(2)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(3)计算:
123333??????666101010
计算333??时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加101010
数都相同,计算时3个3连加的结果做分子,分母不变。
2.引出课题。
分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)
(二)探究新知。
1.教学分数乘整数的意义。
出示例1,指名读题。
(1)分析演示:师:每人吃2块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。9
222问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生999
用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)2222?2?262订正时教师板书:++===(块),(教师将3个双层扇形图片拼成一个一块999939
2蛋糕的图片)3
(2)观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数
22的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:?3。再启发学生说出?3表99
2示求3个相加的和。9
2(3)比较?3和12×5两种算式异同:9
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。2不同点:?3是分数乘整数,12×5是整数乘整数。9
(4)概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2.教学分数乘以整数的计算法则。
(1)推导算理:
由分数乘整数的意义导入。22222问:?3表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,99999
教师板书:2?2?22?362??。提示:分子中3个2连加简便写法怎么写?学生答后板书:9993(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:2?32的分子部分、分母与算式?3两个数有什么关系?(互相讨论)99
观察结果:2?32的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。99
(3)概括总结:
2请根据观察结果总结?3的计算方法。(互相讨论)9
22汇报结果:(多找几名学生汇报)使学生得出?3是用分数的分子2与整数3下乘的积99
作分子,分母不变。
2根据?3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得9
2的数要与原数上下对齐。然后让学生将?3按简便方法计算。9
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
3.反馈练习:
(1)看图写算式:做一做、练习一第1题。
订正时让学生说出乘法中被乘数、乘数各表示什么?
(2)口答列算式:
3333???=()×()4444
3个13是多少?5个是多少?1010
订正时让学生说一说为什么这样列式。
(3)计算:
25?4?81512
先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。
(三)全课小结。
这节课我们学习了什么?引导学生回顾总结。
(四)作业。
练习一5、6题。
第二课时:一个数乘以分数
教学内容:课本第4-6页,例2,例3及“做一做”,练习二1-4题。
教学目标:
(1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。
(2)学会分数乘分数的简便计算。
(3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重、难点:
理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。
教学过程:
一、复习。
153?5?1?21087
1.计算下列各题并说出计算方法。
2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。
二、新课。
引入:这节课我们来学习一人数乘以分数的'意义和计算方法。(板书课题:一个数乘以分数)1.理解一个数乘以分数的意义。3(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?5
3指名列式,板书:?35
333问:?3表示什么意思?指名回答,板书:或求的3倍。555
3(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?5
指名回答:半瓶用131表示;式子为:?。252
3133131说明:?是求的一半是多少,也就是求的是多少。板书:求的。5255252
32(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?53
323232指名回答,板书:?,问:?表示什么意思?指名回答,板书:求的。535353
2.引导学生小结。
①.指出三个算式都是分数乘法,比较三个算式的不同点:第一个算式与第二、三个算式中乘数有什么不同?
想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?
学生齐读课本的结语。
练习:
.课本的做一做1、2题。
.说一说下列算式的意义。533?8?754
3.理解分数乘以分数的计算方法。
(1)出示例3(先出示第一个问题)。
问:你根据什么列出式子?
11得出:根据“工作效率×工作时间=工作总量”列出式子:?。25
问:如果我们用一个长方形表示1公顷,那么
学生回答后,教师出示例3的图(1)11问:公顷的是什么意思?251公顷怎样表示?2
出示例3图(2)
要求学生观察图(2),问:在图中
111?11?引导得出:??252?51011的对于1公顷来说,是1公顷的几分之几?25
观察这个式子有什么特点?
出示例3的第二个问题。
学生列式,教师再出示例3图(3)11131问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?252?525
131?33?板书:??公顷)252?510
(2)引导学生小结分数乘以分数的计算方法。
观察分数乘以分数的计算过程,谁能说一说计算方法?
教师归纳,再看书上结语。
再说明,为了计算的简便,也可以先约分,再乘。323?22?例:??535?35
六年级人教版数学上册教案12
教学内容
解决问题的练习课。(教材第39~40页练习八第4、8~10题)
教学目标
1.复习“已知一个数的几分之几是多少,求这个数”“已知比一个数多(少)几分之几的数是多少,求这个数”两类分数除法应用题,使学生熟练掌握这两类问题的解决方法。
2.提高学生解决实际问题的能力。
重点难点
重难点:熟练掌握这两类分数除法应用题的解题思路和方法。
教学反思
一、基础练习
1.只列式,不计算。(课件出示题目)
(1)一条公路,已经修了300 m,是全长的1/3。这条公路全长多少米?
(2)一条公路,已经修了300 m,比全长少2/3。这条公路全长多少米?
点名学生回答,并说一说分别属于什么类型的应用题?
2.师:这两类应用题的单位“1”是已知的还是未知的?可以用什么方法解答?
引导学生回顾这两类应用题的解题思路和方法。
二、指导练习
(一)已知一个数的几分之几是多少,求这个数
教学教材第39页练习八第4题。
(1)学生读题,理解题意,明确应用题类型。
(2)师:第(1)题和第(2)题分别把什么看作单位“1”?
学生独立思考,点名学生回答。
(3)引导学生分析题中的数量关系。
(4)学生独立列式计算,点名两名学生板演,集体订正。
(5)师生共同归纳方法。
教师小结:已知一个数的.几分之几是多少,求这个数,我们可以用方程法和算术法解答。(板书下列方法)
方程法:设单位“1”的量为x。x×比较量占单位“1”的几分之几=比较量。
算术法:比较量÷比较量占单位“1”的几分之几(=单位“1”的量)。
(二)已知比一个数多(少)几分之几的数是多少,求这个数
1.教学教材第40页练习八第8题。
(1)学生读题,理解题意,明确应用题类型。
(2)引导学生画线段图分析数量关系。
(3)学生独立列式计算,点名两名学生板演(分别用方程法和算术法),集体订正。
(4)师生共同归纳方法。
教师小结:已知比一个数多(少)几分之几的数是多少,求这个数,我们仍可用方程法和算术法解答。(板书下列方法)
方程法:设单位“1”的量为x。
①x×(1±比较量比单位“1”多(少)的几分之几)=比较量。
②x±x×比较量比单位“1”多(少)的几分之几=比较量。
算术法:比较量÷(1±比较量比单位“1”多(少)的几分之几)(=单位“1”的量)。
2.教学教材第40页练习八第9题。
(1)学生独立完成,两人一组互相订正,并说一说解题思路,互相纠正。(教师巡视指导)
(2)引导学生比较第8题和第9题,说一说两道题的异同之处。
(三)综合运用
教学教材第40页练习八第10题。
(1)分四组解决问题,先明确问题类型,再列出数量关系,最后解答。
(2)各小组汇报结果,教师点评。
三、巩固练习
(课件出示题目)
1.判断:白兔的只数是灰兔只数的2/7,单位“1”是灰兔的只数,数量关系式:灰兔的只数×2/7=白兔的只数。(?)
2.水果店里有苹果36 kg,占水果总质量的3/10。水果店共有水果多少千克?
(方程法)解:设水果店共有水果x kg。
3/10x=36 x=120
(算术法)36÷3/10=120(kg)
3.淘淘家七月份的水费是120元,比六月份增加了1/3。淘淘家六月份的水费是多少元?
(方程法)解:设淘淘家六月份的水费是x元。
1+1/3x=120 x=90
(算术法)120÷1+1/3=90(元)
四、课堂小结
你有哪些收获?还有什么不明白的地方?
板书设计
练习课
一、已知一个数的几分之几是多少,求这个数
方程法:设单位“1”的量为x。x×比较量占单位“1”的几分之几=比较量。
算术法:比较量÷比较量占单位“1”的几分之几 =单位“1”的量 。
二、已知比一个数多 少 几分之几的数是多少,求这个数
方程法:设单位“1”的量为x。
①x× 1±比较量比单位“1”多少的几分之几=比较量。
②x±x×比较量比单位“1”多少的几分之几=比较量。
算术法:比较量÷1±比较量比单位“1”多少的几分之几=单位“1”的量 。
教学反思
1.本课时是对“已知一个数的几分之几是多少,求这个数”“已知比一个数多(少)几分之几的数是多少,求这个数”两类应用题的复习巩固。因为在接下来的教学中,学生还会学到这两类问题,所以及时对已学的类型进行巩固练习就显得很重要,一方面加深学生的理解和记忆,另一方面防止学生因学得过多而混淆。
2.我的补充:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
备课资料参考
典型例题准备
【例题】一本漫画书,豆豆第一天看了全书的1/4,第二天看了剩下的2/3,还剩40页没看。这本漫画书一共有多少页?
分析:将全书的总页数看作单位“1”,根据条件列表如下。
根据上表可以得出以下两个等量关系,据此列方程求解。
(1)全书总页数×第二天看完后剩下的页数占全书总页数的分率=剩下的页数。
(2)全书总页数-第一天看的页数-第二天看的页数=剩下的页数。
解答:解:设这本漫画书一共有x页。
1-1/4×1-2/3x=40
x=160
或x-1/4x-1-1/4×2/3x=40
x=160
答:这本漫画书一共有160页。
解法归纳:解决此题的关键是找出题中的数量关系,然后列方程求解。
相关知识阅读
王爷分饼
古时候,一位王爷去山上看望习武的儿子。兄弟几个见父王来了,立刻围了上来。王爷说:“孩子们,父王今天带来了你们最喜欢吃的大饼。”说着取出一个大饼平均分成了两份,给了老大一块。嘴馋的老二说:“父王,我想吃两块饼。”于是王爷把第二块饼平均分成了四份,给了老二两块。贪心的老三说:“父王,给我三块饼。”王爷又把第三块饼平均分成了六份,给了他三块。一向老实的大哥说:“父王,老四最小,应该给他六块。”老四听了非常高兴,觉得父王给他最多。你们觉得谁最多呢?
六年级人教版数学上册教案13
设计说明
1.突出问题意识和探究意识的培养。
爱因斯坦曾说:“提出一个问题往往比解决一个问题更为重要,因为解决一个问题也许只是一个数学上或实验上的技巧问题。而提出新的问题、新的可能性,从新的角度看旧问题,却需要创造性的想象力。”本设计在引导学生自主解决例5的问题时,充分尊重学生的思考过程,也许有的学生认为商品3月份的价格未知,无法解决,也许有的学生会直接根据“降20%和再涨20%”的信息得出价格不变的结论。不管是哪种想法,都要引导学生按照既有思路进一步探究,进而使学生想到用设数法来解题。这样设计,有利于培养学生的数学思考力,提升学生发现问题、提出问题、分析问题和解决问题的能力。
2.体现以学生为主体的原则。
《数学课程标准》中强调:让学生经历数学学习过程与获得数学结论同样重要。因此,在教学中让学生通过自主探究,经历思考、猜想、验证等活动对于发展学生的数学能力有着重要的作用。本设计在探究新知的过程中,每个环节都立足以学生为主体,通过小组合作、讨论、交流等活动,找到解决问题的方法,体现以学生为主体的原则。
课前准备
教师准备,PPT课件,学情检测卡
教学过程
⊙复习导入
1.说出下面各题中表示单位“1”的量,并说说另外一个量怎样表示。
(1)男生人数是女生人数的80%。
(2)香蕉比苹果多20%。
(3)女工人数占全厂人数的45%。
2.某种商品,3月的价格是100元,4月的价格比3月降了20%,这种商品4月的价格是多少?
(1)引导学生找出表示单位“1”的量。
(2)明确题中的数量关系:4月的价格=3月的价格-3月的价格×降低的'20%。
(3)引导学生列式计算。
100-100×20%
=100-20
=80(元)
3.某种商品,4月的价格是80元,5月的价格比4月涨了20%,这种商品5月的价格是多少?
(1)引导学生结合复习题2的思路来解答。
(2)列式计算。
80+80×20%
=80+16
=96(元)
4.导入:这节课我们继续学习如何利用百分数的知识解决生活中的实际问题。(板书课题)
设计意图:习题层层递进,对所学的“求比一个数多(或少)百分之几的数是多少”的问题进行回顾,使学生明确这类问题的解题思路和方法,为探究新知打下良好的基础。
⊙探究新知
过渡:如果我们把复习题2、3中的两个量的倍比关系合并在一起,会是什么样的呢?
1.课件出示教材90页例5。
2.引导学生读题,思考。
(1)题中一共有几个量?
(2)找出已知条件和所求问题。
3.分析题意,探究解题方法。
(1)提问:你能直接说出5月的价格和3月的价格相比是涨了还是降了吗?
(不能)
(2)教师启发引导。
①在这两个已知条件中,表示单位“1”的量是相同的吗?
学生找出关键句分析后明确“4月的价格比3月降了20%”中表示单位“1”的量是3月的价格;“5月的价格比4月又涨了20%”中表示单位“1”的量是4月的价格。
②想一想,题中存在几组数量关系,分别是什么?
学生小组讨论后,交流汇报题中存在的数量关系。
[4月的价格=3月的价格×(1-20%);5月的价格=4月的价格×(1+20%)]
六年级人教版数学上册教案14
本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。
由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。
教材还编排了很多问题情境图来突破教学中的重难点问题。
例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。
这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)
第1课时比的意义
教材48~49页的内容。
1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
重点:
理解比的意义以及比与分数、除法之间的关系。
难点:
理解比与分数、除法之间的关系,明确比与比值的区别。
课件:
学具。
1.课件出示教材第48页情境图。
教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?
(1)长比宽多多少厘米?15-10;
(2)宽比长少多少厘米?15-10;
(3)长是宽的多少倍?15÷10;
(4)宽是长的几分之几?10÷15。
2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)
自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)
(1)比各部分的名称。
课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)
(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的`商就是比值。)
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?
讨论后根据学生交流反馈填写下表:
联系
区别
除法
被除数÷除数=商
一种运算
分子—分母=分数值
比
前项:后项=比值
两个量的关系
请尝试用字母表示比和除法、分数之间的内在联系。
板书:a∶b=a÷b=(b≠0)。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。
师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
1.教材第49页“做一做”第1题。
请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
2.教材第49页“做一做”第2题。
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)
3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。
说说这节课我们学习了什么?你有什么收获?
教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。
在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。
第2课时比的基本性质
教材第50~51页的内容。
1.理解和掌握比的基本性质,初步掌握化简比的方法。
2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
重点:
理解比的基本性质。
难点:
正确应用比的基本性质化简比。
课件、答题纸、实物投影。
师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?
板书:比的基本性质。
学生纷纷猜想比的基本性质。
根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
1.教学比的基本性质。
师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)
(4)全班验证。
2.完善归纳,概括出比的基本性质。
10∶15=10÷15==
15∶9=15÷9=
16∶20=(16
○
□)∶(20
○
□)
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善并板书。
(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。
3.深化认识。
利用比的基本性质做出准确判断:
(1)8∶10=(8+10)∶(10+10)=18∶20( )
(2)12∶16=(12÷6)∶(16÷4)=2∶4( )
(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )
(4)比的前项乘3,要使比值不变,比的后项应除以3。
( )
4.比的基本性质的应用。
(1)引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
(2)从下列各比中找出最简整数比,并简述理由。
3∶4 18∶12 19∶10 ∶ 0.75∶2
(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))
学生独立尝试,化简后交流。
(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)
(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))
四人小组讨论研究,找到化简的方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
5.方法补充,区分化简比和求比值。
)
还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)
2.教材第53页“练习十一”第4题。学生口答完成。
这节课你有什么收获?还有什么疑问?
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用
教材第54页的内容。
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
课件。
课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)
师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)
1.课件出示教材第54页例2。
师:题目中要配制什么?(配制500
mL的稀释液)
师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)
师:“浓缩液和水的体积比是1∶4”是什么意思?
生:就是说在500
mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。
师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?
师:你能求出浓缩液和水的体积各是多少毫升吗?
引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。
思路一:先把比化成分数,用分数乘法来解答。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500×=100(mL)
水的体积:500×=400(mL)
思路二:把比看作分得的份数,先求一份数,再求几份数。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500÷5×1=100(mL)
水的体积:500÷5×4=400(mL)
2.验证所求问题。
方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。
方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。
3.明确按比例分配的意义。
在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)
4.整理解题思路。
(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)
(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。
1.教材第55页“练习十二”第1、2题。
第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。
2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。
3.教材第56页“练习十二”第11题。
注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。
今天这节课我们主要研究了什么?说说你的收获和感受。
本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
六年级人教版数学上册教案15
教学目标:
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:
能灵活运用分数知识解决生活中的“折扣”问题。
教学准备:
教师:多媒体课件,投影仪。
学生:课前了解有关商场打折的信息。
教学过程:
一、提示课题
师:每到周末、节假日,我们总会看到商家为了招揽顾客,经常采用一些促销手段,你知道哪些促销手段?(学生结合经验自由回答,教师用课件出示打折的情境图。)
师:今天我们来学习有关“折扣”的问题(板书课题)。
二、出示目标
师:本节课我们的目标是:(课件出示)
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
师:为了达到目标,下面请大家认真地看书。
2三、出示自学指导
(课件出示)认真看课本第97页“做一做“上面的内容,思考
1、什么是打折扣?打八五折出售是什么意思?
2、求“买这辆车用了多少钱”就是求什么?
3、160×(1—90℅)中1—90℅求的是什么?你还会用别的方法解答这道题吗?
5分钟后,比谁能做对与例题类似的题!
四、先学
(一)看书
学生认真看书,教师巡视,督促人人都在认真地看书。
(二)检测
1.填空。
(1)商品打八折出售,就是按原价的x%出售,也就是降价x%;打七五折出售,就是按原价的x%出售,也就是降价x%。
(2)某种商品实际售价是原价的95%,也就是打x折出售;某种商品降价30%出售,也就是打x折出售。
(学生口答)
2.课本第97页做一做
(找三名学生板演,其余学生做在练习本上,教师认真巡视,发现错例,板书于黑板上对应位置。)
五、后教
(一)更正
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好依次进行更正)
(二)讨论
1、看百分数,认为对的举手。为什么?
小结:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。一般情况下,不把折扣写成十分之几的分数形式。
2、看三道算式,认为对的'举手。为什么?
3、看计算过程和结果,认为对的举手。
4、评正确率、板书,并让学生同桌对改,更正错题。
5、议一议:原价、现价、折数之间有什么关系?怎样解决求折扣的问题?
(学生先独立思考再小组讨论)
教师小结:现价=原价×折数(“求折扣”的应用题的数量关系与“求一个数的十分之几或百分之几十是多少”的应用题的数量关系是相同的,关键是要先理解折扣的含义,再运用分数应用题的觖题方法来解决。)
六、全课总结
师:同学们,今天我们学习了有关折扣的知识,意义是什么?该怎样计算呢?计算时需要注意什么?
下面,我们就运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。
七、当堂训练
作业
1、填一填
(1)下列折扣化成百分数各是多少?填在x里。
九五折x%
七折x%八八折x%
五折x%
(2)一种商品现在打八折出售,比原价便宜了x%。
2、妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?
板书设计:
折扣
1、折扣的意义:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。
2、折扣的计算方法:原价×折扣=现价
【六年级数学上册教案】相关文章:
数学六年级上册教案01-02
数学上册教案01-15
六年级上册数学比的教案01-07
六年级上册数学比教案01-07
小学数学六年级上册教案01-12
六年级上册数学复习教案01-08
数学六年级上册教案精选15篇01-05
六年级上册数学全教案01-07
数学六年级上册教案(15篇)01-02
数学六年级上册教案(精选20篇)03-15