数学六年级上册教案精选15篇
作为一名教学工作者,常常要写一份优秀的教案,教案是教学活动的依据,有着重要的地位。那么优秀的教案是什么样的呢?下面是小编收集整理的数学六年级上册教案,希望对大家有所帮助。
数学六年级上册教案1
教案设计
设计说明
本课时主要是让学生认识到圆的轴对称性,创设一个“找圆心”的活动,引导学生借助折纸活动,找出这个圆的圆心,进一步理解同一个圆的半径都相等的特征。
1、动手实践是重要的`学习方式。
考虑到小学生的认知水平,教材中并没有给出对圆的对称特征的描述。所以在教学中我采用动手操作的学习方式,引导学生观察与思考,通过“折一折、剪一剪”等活动,逐步感知和体会圆是轴对称图形且有无数条对称轴。
2、增强学生对圆的感性认识。
初步感受圆的特征以及圆与以前学过的平面图形的不同,学生在折纸及小组交流合作中发现圆是轴对称图形,让学生在独立思考的基础上表达自己的观点和思考的策略。
课前准备
教师准备
PPT课件直尺
学生准备
圆规剪刀白纸圆形纸片
教学过程
复习导入
回忆以前学过的轴对称图形。
1、举例说出轴对称的物体。
如:蝴蝶、飞机、门窗、圆形的钟面、月饼等。想一想这些图形有什么特点。
小结:如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫作对称轴。
2、引入:今天,我们一起来探究圆的奥秘
数学六年级上册教案2
教学目的:
1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
教学重点:
掌握利息的计算方法。
教学难点:
正确地计算利息,解决利息计算的实际问题。
教学过程:
一、 导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
二、新课
1、 介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2、 阅读P99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽20xx年月1月1日把100元钱存入银行,整存整取一年,到20xx年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)
本金:存入银行的钱叫做本金。小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读P99页表格,了解同一时期各银行的利率是一定的。
3、学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。
4、利息的计算。
(1)出示利息的计算公式: 利息=本金利率时间
(2)计算方法
按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:1002.70%3=8.10(元)
(3)三年后取款,小丽能得到8.10元利息吗?为什么?
学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?
(4)学生计算后回答,教师板书
利息税金:8.1020%=1.62元 税后利息:8.10-1.62=6.48元
加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。
5、练习。
(1)完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
(2)完成练习二十三的.第9题。
教学总结:
折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。
数学六年级上册教案3
一、教材简析:
这一册教材包括下面一些内容:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。
分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。
在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的.数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。
在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。
数学六年级上册教案4
教学内容:
人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1、联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2、让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3、能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:
掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数和一个数乘分数的意义。
教学准备:
课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1、教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“2/
9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2、小组交流,汇报结果
预设:(1)2/
9+2/
9+2/
9=6/
9=2/
3(个);
(2)2/
9×3=6/
9=2/
3(个);
(3)3×2/
9=6/
9=2/
3(个);
(4)3个2/
9就是6个1/
9就是6/
9,再约分得到2/
3(个)。(根据学生发言依次板书)
3、比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,
生1:每个人吃2/
9个,3个人就是3个2/
9相加。
生2:3个2/
9个相加也可以用乘法表示为2/
9×3。
提出质疑:3个2/
9相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个2/
9相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4、归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】
(二)分数乘整数的计算方法
1、不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/
9×3的计算过程用式子该如何表示?预设,
生1:按照加法计算2/
9×3=2/
9+2/
9+2/
9=6/
9=2/
3(个)。
生2:2/
9×3=6/
9=2/
3(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/
9。
2、归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3、先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的.思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】
二、巩固练习,强化新知
1、例1“做一做”第1题
师:说出你的思考过程。
2、例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的1/
2是多少。”
(3)出示第2小题学生自练。引导说出:“12×1/
4表示求12 L的1/
4是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1、出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/
10,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的3/
10是多少。”
2、比较两种意义
出示:一袋面包重3/
10千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。
师:那么,它们有什么是相同的呢?(计算方法和结果)
【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】
五、联系实际,灵活运用
1、算式3/
16+3/
16+3/
16+3/
16可以列成_________× _________,表示;或者表示_________;
也可以列成_________ ×_________,表示。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2、比较练习
(1)一堆煤有5吨,用去了2/
11,用去了多少吨?
(2)一堆煤有2/
11吨,5堆这样的煤有多少吨?
你能编写出类似的问题并加以解决吗?
3、拓展练习
1只树袋熊一天大约吃6/
7 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】
六、课堂小结,拓展延伸
1、这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
2、谁会用含有字母的式子表示分数乘整数的计算方法?a/
b×c=ac/
b,其中a,b,c均为整数且a≠0。
【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】
数学六年级上册教案5
教学内容:练习一6~8
重难点:会灵活运用知识解决实际问题。
突破方法:引导学生独立思考,合作交流。
教学步骤:
一、游戏引入:摆子连线。
二、指导练习。
1、练习一.6.
(1)出示方格纸,让学生在方格纸上把三角形平移。从平移的过程中你了解到哪些信息?
(2)引导学生观察图形平移后,表示顶点位置的数对有什么变化?
(3)试一试,小组交流。
2、练习一.8.
(1)组织学生读题,理解题意。
(2)讨论:怎样编号?
(3)全班汇报交流。
三、提高训练。
练习一.7.(1)组织学生读题,理解题意。(2)小组合作探究a.移一移,说一说。b.比较区别。c.提出数学问题并解答。
四、课堂小结。
五、补充练习。(单元格自行设计)
1、先标出三角形各个顶点的`位置,再分别画出三角形向右、向下平移5个单位后的图形,再标明平移后图形各个顶点的位置。
2、(1)赵东家在少年宫以东200m,
再往南100m处;李倩家在公园以
西的400m,再往北200m处。请在
图中标出这两位同学家的位置。
(2)赵东从家出发,依次路线是
(12,2)
(10,3)
(9,5)
(3,4)
(4,2),你知道
他今天先后去过哪些地方吗?
数学六年级上册教案6
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:
圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:
多媒体课件、1元硬币、直尺、卷尺、系线的.小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)
[设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]
数学六年级上册教案7
教学内容:
教材第36页例7、“练一练”,第39页练习六第16~21题,思考题。
教学目标:
1.使学生经历“找乘积是1的两个数”和“找一个数的倒数”的过程,认识和理解倒数的意义,掌握求一个数的倒数的方法。
2.使学生在认识互为倒数的两个数的特点的过程中,发展观察,比较和抽象、概括等思维能力。
教学重点、难点:
理解倒数的意义,学会求一个数的倒数。
教学过程:
一、导入新课
谈话:同学们,“朋友”这个词对我们来说已经非常熟悉了,能说说教室里哪些同学是你的朋友吗?
指名回答。
谈话:在将近六年级学习生活中,很多同学生建立了深厚的友谊,“朋友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积是1,就可以说是这两个数之间的一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今天要研究的问题。
二、学习新知。
1、理解倒数的意义。
(1)出示例7,学生独立完成。
(2)引出概念。
乘积是1的两个数互为倒数。例如 和 互为倒数。可以说 是 的倒数, 是 的倒数。
引导:请大家仔细观察,刚才我们找出的这些算式有什么共同特点?
学生交流后明确:这些算式里两个数的乘积都是1.
指出:像这样乘积是1的两个数互为倒数。
(3)学生举例来说。进行及时的评议。
(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
小结:倒数不是指一个具体的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互为倒数。
2、归纳方法
(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出 和 的'倒数吗?
提问:观察上面互为倒数的各组数,它们的分子和分母位置发生了什么变化,把你的发现与同桌交流。
小组讨论:引导观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
指名回答:找一个分数的倒数只要交换分子、分母的位置。
追问:0有倒数吗?为什么?1呢?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
三、巩固练习。
1、做练习六第17题。
学生分别说出每个数的倒数,并选择几个数说说是怎样想的。
2、做练习六第18题
学生独立宛成,再集体交流,选择两题让学生说说思考的过程。
3、做练习六第19题
练习之前明确要求:观察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边观察。
全班交流结果,板书每组里各数的倒数。
提问:你发现每组数和它们倒数的特点了吗?把你的发现和大家交流。
提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。
4、做思考题。
启发:联系倒数的意义想一想,要使三个分数乘积是1,[板书:( )×( )×( )=1]必段符合什么条件?
引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能在这七个分数里分别找出这样的3个分数吗?试着找找看。
学生先尝试练习,再集体交流。
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
补充习题。
板书计划:
倒数的认识
乘积是1的两个数互为倒数。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
数学六年级上册教案8
教学目标:
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:
能灵活运用分数知识解决生活中的“折扣”问题。
教学准备:
教师:多媒体课件,投影仪。
学生:课前了解有关商场打折的信息。
教学过程:
一、提示课题
师:每到周末、节假日,我们总会看到商家为了招揽顾客,经常采用一些促销手段,你知道哪些促销手段?(学生结合经验自由回答,教师用课件出示打折的情境图。)
师:今天我们来学习有关“折扣”的问题(板书课题)。
二、出示目标
师:本节课我们的目标是:(课件出示)
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
师:为了达到目标,下面请大家认真地看书。
2 三、出示自学指导
(课件出示)认真看课本第97页“做一做“上面的内容,思考
1、什么是打折扣?打八五折出售是什么意思?
2、求“买这辆车用了多少钱”就是求什么?
3、160×(1—90℅)中1—90℅求的是什么?你还会用别的方法解答这道题吗?
5分钟后,比谁能做对与例题类似的'题!
四、先学
(一)看书
学生认真看书,教师巡视,督促人人都在认真地看书。
(二)检测
1.填空。
(1)商品打八折出售,就是按原价的()%出售,也就是降价()%;打七五折出售,就是按原价的()%出售,也就是降价()%。
(2)某种商品实际售价是原价的95%,也就是打()折出售;某种商品降价30%出售,也就是打()折出售。
(学生口答)
2.课本第97页做一做
(找三名学生板演,其余学生做在练习本上,教师认真巡视,发现错例,板书于黑板上对应位置。)
五、后教
(一)更正
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好依次进行更正)
(二)讨论
1、看百分数,认为对的举手。为什么?
小结:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。一般情况下,不把折扣写成十分之几的分数形式。
2、看三道算式,认为对的举手。为什么?
3、看计算过程和结果,认为对的举手。
4、评正确率、板书,并让学生同桌对改,更正错题。
5、议一议:原价、现价、折数之间有什么关系?怎样解决求折扣的问题?
(学生先独立思考再小组讨论)
教师小结:现价=原价×折数(“求折扣”的应用题的数量关系与“求一个数的十分之几或百分之几十是多少”的应用题的数量关系是相同的,关键是要先理解折扣的含义,再运用分数应用题的觖题方法来解决。)
六、全课总结
师:同学们,今天我们学习了有关折扣的知识,意义是什么?该怎样计算呢?计算时需要注意什么?
下面,我们就运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。
七、当堂训练
作业
1、填一填
(1)下列折扣化成百分数各是多少?填在()里。
九五折()% 七折()%八八折()% 五折()%
(2)一种商品现在打八折出售,比原价便宜了()%。
2、妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?
板书设计:
折扣
1、折扣的意义:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。
2、折扣的计算方法:原价×折扣=现价
数学六年级上册教案9
本册教学目标:
这一册教材的教学目标是,使学生:
1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2. 理解倒数的意义,掌握求倒数的方法。
3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6. 能在方格纸上用数对表示位置,初步体会坐标的思想。
7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。
9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12. 养成认真作业、书写整洁的良好习惯。
第一单元 位置
单元教学目标:
1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2. 能在方格纸上用数对确定位置。
教学内容 位置(一) 新授课 新授
教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2. 使学生能在方格纸上用数对确定位置。
教学重点 能用数对表示物体的位置。
教学难点 能用数对表示物体的位置,正确区分列和行的顺序。
教具准备
教学过程 一、 导入
1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、 新授
1、 教学例1
(1) 如果老师用第二列第三行来表示××同学的.位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、 小结例1:
(1) 确定一个同学的位置,用了几个数据?(2个)
(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、 练习:
(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、 教学例2
(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3) 同桌讨论说出其他场馆所在的位置,并指名回答。
(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、 练习
1、 练习一第4题
(1) 学生独立找出图中的字母所在的位置,指名回答。
(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、 练习一第6题
(1) 独立写出图上各顶点的位置。
(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。
(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、 总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、 作业
练习一第1、2、5、7、8题。
数学六年级上册教案10
教学内容:
教材第24页的内容和第25页“练一练”第1、2题,第26页“练一练”第6题。
教学目标:
1.会分析解答“求比一个数多(少)几分之几是多少”的两步计算的分数乘法应用题。
2.在解决问题的过程中培养学生分析推理能力,掌握解决问题的策略,如审题,找关键句,分析关键句的含义,找单位“1”,将文字、图示、算式结合起来。
3.培养学生解决实际问题的能力,体会数学与生活的联系。
教学重点:
学会分析解决两步计算的分数乘法应用题。
教学难点:
初步构建分数问题的知识结构。
教学准备:
教学课件。
教学过程
学生活动
(二次备课)
一、谈话导入
秋天来了,森林里的小动物正在举行第十届动物车展,我们一起来看看。请同学们用数学的眼光看一看,图画上有哪些数学信息?根据信息你能提出什么数学问题?
课件出示教材第24页情境图,学生观察找出数学信息。
第十届动物车展第一天成交量为50辆,第二天成交量比第一天增加了,问题是第二天的成交量是多少辆?
师:这是一道“求比一个数多几分之几是多少的问题”。这节课我们继续来学习分数混合运算的有关知识:求比一个数多(少)几分之几是多少的应用题。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1.理解题意,探究问题。
引导学生:(1)说一说你是怎么理解第二天成交量比第一天增加了的(这里的表示的不是数量,而是指第二天增加的成交量是第一天成交量的)。
师:这里的是辆吗?如果不是那它表示什么意思?
生:一定不是,汽车怎么可能出现辆。
生:增加了,是指第二天增加的成交量是第一天成交量的。
师:对。这里的是一个分率,它的单位“1”是第一天的成交量。第二天成交量比第一天增加了就表示第二天成交量比第一天多了第一天成交量的。
2.画图表示第二天的`成交量。
学生理解题意后可试着描述,师生共同画出图形。
在画图时注意分析:
(1)确定单位“1”后先画单位“1”,即第一天的成交量。
(2)再画第二天的成交量,可以提问第二天的成交量线段画的比第一天的长还是短,为什么(因为第二天比第一天多,所以线段要比第一天的长)。长出的这段要画多长(表示第一天成交量线段的)。
(3)然后分析示意图中每部分表示的意义。
第2条线段中,和表示第一天成交量的线段相对的这段表示它和第一天成交量相等,多出来的这段表示第二天比第一天多的成交量,也就是第一天成交量的。
3.看图列式,解决问题。
让学生根据分析,尝试自己列式,并在小组内说说自己的思路,再汇报。
可能会有两种意见:(1)先求比第一天增加了多少;(2)先求第二天成交量是第一天的几分之几。这两种意见教师都给予肯定。
生1:我是先求第二天比第一天增加了多少辆,50×=10(辆),再求第二天的成交量50+10=60(辆)。列成综合算式是50+50×。
生2:我是从图中看出第二天是第一天的(1+)=,再求第二天的成交量50×=60(辆)。列成综合算式是50×(1+)。
4.回顾反思。
组织学生在小组内回顾和交流这道题的解决过程和方法。
(1)读题,找出题中的条件和问题;
(2)找出单位“1”的量,画图帮助分析数量关系;
(3)根据线段图找出数量关系;
(4)列式解答。
四、巩固练习
1.完成教材第25页“练一练”第1题。
让学生先分析题目中的信息,理解题意后再完成。
2.完成教材第25页“练一练”第2题。
让学生理解“体积大约增加”是增加谁的,从而找到单位“1”解决问题。
3.完成习题:学校新购进足球30个,购进排球的数量比足球少,学校购进排球多少个?
这是求“比一个数少几分之几的数是多少
”,让学生进行迁移类推。
五、拓展提升
1.阳阳期中考试数学得了96分,语文的分数比数学低,阳阳的数学和语文一共得了多少分?
96+96×(1-)=184(分)
2.商场某品牌衣服进价240元,加价后销售,元旦促销,再降价销售,现在的售价是多少元?
240×(1+)×(1-)=225(元)
六、课堂总结
让学生说一说“求比一个数多(少)几分之几的数是多少”的解题思路和方法,并总结本节课的收获。
七、作业布置
1.教材第25页“练一练”第3题。
2.教材第26页“练一练”第6题。
观察情境图,了解题目中的信息,提出问题。
教师根据学生预习的情况,有侧重点地调整教学方案。
在小组里交流后回答。
学生列式,说出自己的理由,教师强调问每一步求的是什么。
数学六年级上册教案11
设计说明
1.注重估算意识和能力的培养。
结合具体情境发展学生的估算意识和《数学课程标准》中强调的能力培养。分数中的估算要比整数、小数的估算难把握一些。因此,在本节课的教学设计中,先让学生结合问题情境独立进行估算,然后进行汇报,交流估算的依据。不仅能利用估算检验解题的正确性,还能借此提高学生的估算意识和能力。
2.重视知识的形成过程。
在教学过程中,结合生活实际创设情境,使学生很快投入到思考和探究的状态。在探究新知的过程中,每个环节都立足以学生为主,通过小组合作、讨论、交流,找到解决问题的方法,渗透数形结合的思想。新旧知识的迁移都为学生创造了有利的条件,起到了抛砖引玉的作用,多种教学方法的使用可以更好地完成这节课的教学目标。
课前准备
教师准备 PPT课件
学生准备 直尺
教学过程
⊙创设情境,引入新课
师:同学们,你们知道世界水日吗?为什么要设立这样一个节日呢?水是我们人类赖以生存的最宝贵的资源,如果我们不珍惜水资源,那么地球上的最后一滴水将是我们人类的.眼泪。所以,我们要节约用水,从我做起,从身边的小事做起。这节课我们就一起来研究节约用水中的数学问题。
[板书课题:分数混合运算(三)]
设计意图:数学来源于生活,从节约用水的话题入手,能使学生很快进入学习状态,激发学生的探究欲望。
⊙合作交流,探究新知
1.旧知铺垫。
课件出示:小刚家八月用水14吨,九月比八月节约了,九月用水多少吨?
(引导学生画图分析题中的数量关系,独立解决问题)
2.变更条件,引出问题。
课件出示:小刚家九月用水12吨,九月比八月节约了,八月用水多少吨?
3.组织学生边读题边思考:
(1)估计哪个月用水量多。
(2)你是根据哪句话来判断哪个月用水量多,哪个月用水量少的?
(3)你判断的关键是什么?
(学生思考后交流问题的答案,同学互评,教师进行适当指导)
4.出示自学指导:
(1)尝试画线段图分析题意,找出等量关系。
(2)选择恰当的方法解决问题。
(3)想一想:你还有其他的解题方法吗?
(学生独立探究解题方法,教师巡视指导)
5.引导学生在小组内交流,梳理自己的解题思路。
6.展示解题过程。
(1)引导学生说出解题思路。学生边画图边说解题思路。
数量关系:八月的用水量-八月用水量的=九月的用水量
八月的用水量×=九月的用水量
(2)指名板演解题过程。
方法一 解:设八月用水x吨。
x-x=12
x=12
x=14
方法二 解:设八月用水x吨。
x=12
x=12
x=14
(3)其他学生提出自己的疑问。
师追问:你们为什么用方程解决问题?用方程解决问题有什么好处?
(学生讨论并汇报)
(4)引导学生对解题结果进行检验。
(学生先独立检验,然后全班交流)
设计意图:学生通过教师的引导进一步理解题意,并结合线段图体会题中的数量关系,建立新旧知识间的联系,积累了解决问题的经验。通过讨论、交流等方式不仅提高了学生合作学习的意识,还提高了学生解决问题的能力。
⊙课堂练习,提升反馈
1.淘气家八月用水14吨,比九月多用了,九月用水多少吨?
(1)试着估算一下哪个月的用水量少,并说出理由。
(2)画线段图,表示题中的数量关系。
(3)解题并检验。
数学六年级上册教案12
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的.启蒙教育。
教学重点:
理解倒数的意义和怎样求倒数。
教学难点:
求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:
自学书本P19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、思考:0.2的倒数是多少?
五、小结:请学生说一说这节课学习了哪些内容。
六、作业:练习五3—8。
数学六年级上册教案13
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的'带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
数学六年级上册教案14
1、目标的定位
目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。
《比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的是通过教学使学生认识到所学知识的价值所在。
值得关注的'是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。
2、创造性地使用教材
《比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。
一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:
1、什么叫比例尺?
2、怎样求比例尺?
3、求比例尺时应注意哪些问题?
这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。
这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。
3、教学中的不足
在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。
后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于2000000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。
数学六年级上册教案15
教学目标:
1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。
3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:
理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。
教学流程:
一、知识扩充
(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)
师:(出示一组信息) 20xx年12月,中国银行给工业发放贷款18 636亿元,给商业发放贷款8 563亿元,给建筑业发放贷款2 099亿元,给农业发放贷款5 711亿元。
(让生思考,从信息中想到了什么?)
设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境
师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?
生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?
(生走入老师创设的情境,感受存款的乐趣。)
师:当我们来到银行的时候,不但会受到存款员的热情接待,而且会拿到一张存款单。存款单蕴含着怎样的奥秘呢?我们在填写的过程中一起总结好吗?
(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)
设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的'种类、本金等数学概念。
三、合作学习
师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
(生找出本金、存款种类后,再谈一谈自己有什么新发现。)
教师引导学生总结出“利息”、“利率”的概念,并设疑“利息的多少和什么有关系呢?有怎样的关系呢”?
出示表格
(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息 = 本金 × 时间 × 利率。)
师:请同学们根据自己总结出来的公式,帮老师预算一下,老师存入银行的1000元,整存整取5年,年利率3.6%,到期时可获利息多少元?
生: 1000 × 3.6% ×5 = 180 元。
师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到20xx年。(出示利息清单。)
利息清单
生总结:税后利息 = 本金 × 利率 × 时间 ×(1-20%)。
设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。
四、深化练习
1.奉献。
五年一班的张华同学在20xx年1月1日把积攒的1200元钱存入银行,整存整取二年,年利率2.7%。她准备把到期后的税后利息捐给“希望工程”支援贫困地区的失学儿童,到期时她可捐钱多少元?
2.理财。
你有压岁钱吗?以小组为单位核算一下,如果把这些钱存起来,你们想怎样存?会得多少税后利息?你们准备怎么使用?
3.帮助。
李大爷认识到了存款的益处,所以决定把自己的1万元存入银行5年,面对“国债3.6%”、“定期3.6%”、“活期0.72%”三种选择,他该怎么办呢?你能按获得利润的多少为李大爷提个合理化建议吗?
4.介绍小知识。(教育储蓄)
设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。
效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。
【数学六年级上册教案】相关文章:
数学六年级上册教案01-02
六年级上册数学比的教案01-07
六年级上册数学比教案01-07
数学上册教案01-15
小学数学六年级上册教案01-12
六年级上册数学复习教案01-08
六年级上册数学全教案01-07
数学六年级上册教案(15篇)01-02
数学六年级上册教案(精选20篇)03-15