五年级下册数学教案

时间:2023-01-04 13:42:29 数学教案 我要投稿

五年级下册数学教案(15篇)

  作为一位杰出的老师,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。那么优秀的教案是什么样的呢?下面是小编整理的五年级下册数学教案,仅供参考,希望能够帮助到大家。

五年级下册数学教案(15篇)

五年级下册数学教案1

  教学内容:

  长方体、正方体的体积计算

  教学目标:

  1.通过讲授,引导学生找出规律,总结出体积的公式。

  2.指导学生运用公式正确计算长方体、正方体的体积。

  3.培养学生积极思考、探索新知的思维品质。

  教学重点:

  长方体、正方体体积计算。

  教学难点:

  长方体、正方体体积计算

  教具运用:

  正方体木块若干。

  教学过程:

  一、复习导入

  1.什么叫体积?计量物体的体积常用的单位有哪些?

  2.怎样计算一个物体的体积呢?

  二、新课讲授

  1.长方体体积的计算。

  教师课件出示一块长方体积木,一块盖房用的大型砖板。

  (1)提问:它们的体积是多少?你是怎样想的?

  引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

  教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

  (2)观察操作,探究长方体的体积公式。

  小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

  学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

  说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

  学生独立思考,然后小组内讨论交流,得出结论。

  小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的'乘积。

  板书:长方体的体积=长宽高

  讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

  (3)质疑:求长方体的体积公式需要知道什么条件?

  2.探究正方体的体积公式。

  (1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

  (2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

  3.运用长方体的体积公式解决问题。

  (1)出示教材第30页的例1。

  (2)学生看图,理解题意。

  (3)说出题中所给信息,和所求问题。

  (4)指名说出长方体的体积公式。

  (5)指名学生上台板演过程,其他同学判断。

  (6)老师订正书写。V=abh=743=84(cm3)

  (7)看图,学生独立在练习本上完成。

  (8)指名板演,集体订正。

  三、课堂作业

  完成课本第31页做一做第1、2题。

  四、课堂小结

  1.这节课,你有什么收获?

  2.在计算长方体和正方体的体积时,要注意哪些问题?

  五、课后作业

  完成练习册中本课时练习。

  板书设计 :

  长方体和正方体的体积

  长方体的体积=长宽高

  V=abh

  正方体体积=棱长棱长棱长

  V=aaa=a3

五年级下册数学教案2

  教学内容:

  教材第xx页的内容及第xx页练习的第x题。

  教学目标:

  1.理解两个数的公倍数和最小公倍数的意义。

  2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  教学重点:

  理解两个数的公倍数和最小公倍数的意义。

  教学难点:

  自主探索并总结找最小公倍数的方法。

  教学具准备:

  多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

  教学方法:

  小组合作谈话法。

  教学过程:

  一、创设情景,生成问题:

  前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

  二、探索交流,解决问题

  1.在数轴上标出4、6的倍数所在的点

  拿出老师课前发的画有两条直线的纸。

  在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

  2.引入公倍数

  (1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

  (2)观察:从4和6的倍数中你发现了什么?

  (3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

  (4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

  说说看,什么叫两个数的公倍数?

  3.用集合图表示

  如果让你把4的.倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

  4.引人最小公倍数

  学生汇报后问:

  (1)为什么三个部分里都要添上省略号?

  (2)4和6的公倍数还有哪些?有没有最大公倍数?

  (3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

  4的倍数6的倍数

  4,8,

  16,20,

  12,24,

  4和6的公倍数:

五年级下册数学教案3

  教学内容:

  义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。

  教材分析:

  本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。

  包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。

  学情分析:

  1、学生已有的知识基础。

  在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。

  2、学生已有的生活经验。

  学生大都接触过物品的`包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。

  3、学生学习本课内容可能遇到的困难及学习方式的研究。

  学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。

五年级下册数学教案4

  教学目标:

  1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

  2。学会进行两位数乘两位数的`乘法计算,并能解决一些简单的实际问题。

  教学重点:

  1、两位数乘两位数的估算。

  2、探索并掌握两位数乘两位数(不进位)的乘法计算。

  教学难点:

  掌握两位数乘两位数(不进位)的乘法并能熟练计算。

  教学理念:

  组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

  教学准备:

  课件。

  学生准备:

  预习课前知识。

  教学过程:

  一、实践调查

  课前让学生在汇景新城作实地调查,调查本小区住户情况

  二、课内交流

  1、让同学们根据调查所得的数学信息编一道数学应用题。

  2、根据所编的题目独立列式

  3、探讨和交流如何解决问题。

  (1)尝试通过估算结果解决问题。

  A、分组讨论不同的计算过程

  B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

  (2)讨论算法

  三、习题巩固:

  1、试一试

  11×4324×1244×21

  2、练一练:

  第1、2题

  3、第3题,学生独立思考,理解题意,再进行计算

  四、综合应用:

  陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

  五、课堂总结:今天我们学习了什么知识?你学会了什么?

  六、板书设计:

五年级下册数学教案5

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的是几?最大的'是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

五年级下册数学教案6

  课题:简单的土石方计算

  教学目标:

  1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

  2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

  3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

  教学重点:

  熟练运用长方体和正方体的体积计算公式解决实际问题。

  教学难点:

  长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

  教学过程:

  一、巧设情境,激趣引思。

  同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

  (1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

  (2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

  (3)学生分组讨论,指名回答问题。

  这节课我们运用体积的有关知识,解决实际生活中的问题

  二、自主互动,探究新知。

  课件出示例题1:让学生读题,讨论:挖出的土与地窖的.体积有什么关系? 让学生尝试解决问题 交流计算的结果。

  教师介绍“方”,让学生用方描述挖出的土。

  课件出示例题及拦河坝的和示意图。

  让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

  怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

  让学生尝试解决问题,并交流计算的方法和结果。

  三、应用拓展,反思交流。

  1、应用:

  (1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

  (2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

  第3、4题,让学生先说一说,要解决问题,先要求出什么?

  2、拓展:

  练一练5 板书设计:

  简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

  横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案7

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的.饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

   (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

五年级下册数学教案8

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的.关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案9

  信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

  1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

  2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

  3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

  一、引入:

  1、出示:条形统计图

  (1)某电影院上月各类影片观众人数统计图

  (2)新芽书苑20xx年3月第一星期故事书销售情况统计图

  2、提问:你已知道了条形统计图的哪些知识?

  3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

  (1) 上虞电影院20xx年(1~6)月观众人数统计图。

  (2) 百官镇一农户96~20xx年人均收入统计图。

  二、展开:

  (一)折线统计图的特点和作用。

  1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

  (1) 学生自由讨论交流。

  (2) 这两类统计图最大的区别是什么?

  2、结合条形统计图的特点,归纳折线统计图的`特点。

  3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

  4、结合课本进一步深入了解折线统计图的特点和作用。

  (二)折线统计图的绘制。

  1、你认为哪幅条形统计图用折线统计图来绘制更合适?

  2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

  A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

  3、学生尝试绘制。

  (1) 出示“我们的调查资料”。

  (2) 想一想,哪几组数据用折线统计图绘制比较合适?

  (3) 请选择其中一组数据绘制。

  (4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

  (5)大组交流绘制情况,并纠错。

  三、应用

  1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

  2、出示:百官镇一农户96~20xx年人均收入统计图。

  思考:A、看图后你有什么感受?

  B、你能提出哪些数学问题?

  3、对比练习:

  (1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

  思考:A、两种鞋的销售趋势分别怎样?

  B、你有什么建议?

  (3) 出示:两家游泳衣专卖店的销售情况统计图。

  思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

  B、猜猜为什么乐乐专卖店会有这样的销售现象

  四、总结

  你又有什么新收获?你是用什么方法学会的?

  五、课外作业

  省略

五年级下册数学教案10

  【教学内容】

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  【教学目标】

  1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2.知道100以内的质数,熟悉20以内的质数。

  3.培养学生自主探索、独立思考、合作交流的能力。

  4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【教学重难点】

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  【教学过程】

  一、复习导入

  1.什么叫因数?

  2.自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1.学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2.教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3.出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的倍数,再排除掉3 的.倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表

  三、课堂作业

  完成教材第16页练习四的第1~3题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  【板书设计】

  质数和合数

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  【教学反思】

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案11

  教案设计

  设计说明

  1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

  学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

  2.在学生原有的认知水平上促进发展。

  本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的`多少可能不同,但都能获得成功的体验。

  课前准备

  教师准备 PPT课件

  学生准备 两张完全一样的方格纸

  教学过程

  ⊙创设情境,导入新课

  师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

  (课件出示情境图)

  师:“分数王国”里有哪些数呢?“小数王国”里呢?

  (生汇报)

  师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

  生:和0.06都说自己更大。

  师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

  设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

  ⊙自主探索,学习新知

  1.解决问题。

  (1)课件出示教材7页情境图。

  师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

  (2)大胆猜测,探究比较方法。

  方法一 把分数化成小数来比较。

  =1÷20=0.05,因为0.060.05,所以0.06。

  方法二 把小数化成分数来比较。

  0.06=,=,因为,所以0.06。

  课件展示学生没有想到的画图法,让学生在讨论中理解。

  0.06>

  师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

  2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

  (1)认真读题,明确题目中的“翻译”指什么。

  (2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

  (3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

  3.归纳分数化成小数的方法。

  (1)探究将分数化成小数的方法。

  把下列分数化成小数:

  练习,并思考转化方法。

  (2)小组内交流方法。

  (3)班内反馈。

  要求学生说出转化方法,并讲明转化的原理。

  师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

  4.归纳“小数化成分数”的方法。

  把0.3,0.27,0.75,0.125化成分数。

  练习,探究小数化成分数的方法。

  师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

  设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案12

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的.商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

五年级下册数学教案13

  教学目标

  1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3.进一步提高学生的统计技能,增强学生的统计意识。

  教学重难点

  教学重点:认识众数,理解众数的意义及作用。

  教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

  教学过程

  (一)复习旧知

  1、回忆平均数及中位数的求法,指生回答。

  2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

  (二)完成例1

  1.出示例题:

  五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

  1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

  师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

  2.学生小组合作选择10名队员。

  3.根据学生汇报,师课件随机演示选择结果。

  平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

  +1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

  +1.52+1.52+1.52+1.52)÷20

  =29.5÷20

  =1.475

  中位数=(1.48+1.49)÷2

  =2.97÷2

  =1.485

  接近1.485m的同学人数太少,不适合大多数同学的

  身高。最高的与最矮的相差6cm。

  这组数据的中位数是1.485,身高接近1.485m的比较合适。

  身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

  1 . 52出现的次数最多,最能应这组同学的身高情况.

  4.小结:以众数1.52为标准选择队员身高会比较均匀。

  师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

  5.师生共同归纳众数概念。

  师揭示众数的概念

  一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

  6、做一做,

  7、小练习:

  学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

  求这次英语百词听写竞赛中学生得分的众数.

  三个数据存在的数量和意义:

  比较三个统计量:

  (三)学习众数的特征

  师出示练习题:

  1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

  19 23 26 29 28 32 34 35 41 33 31

  25 27 31 36 37 24 31 29 26 30

  (1)这组数据的'中位数和众数各是多少?

  (2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

  2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

  甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

  乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

  (1)甲、乙成绩的平均数、众数分别是多少?

  (2)你认为谁去参加比赛更合适?为什么?

  生先独立思考,再全班交流。

  师:在找三组数据的众数的过程中,你发现了什么?

  生:在一组数据中,众数可能不止一个,也可能没有众数。

  师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

  2、三个数据存在的数量和意义

  (四)综合练习

  你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

  (五)联系情境,应用众数

  销售衣服问题。

  师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

  师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

  生:讨论交流,发表自己想法。

  师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

  (五)拓展延伸(“生活中的数学”)均码问题。

  师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

  师:课后请同学们调查和了解一下:什么是“均码”?

  (六)全课小结

  教师:同学们,今天我们上了这节课你收获了什么?

五年级下册数学教案14

  【教学内容】

  教科书第1~2页的例1以及相关的练习。

  【教学目标】

  1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

  2?培养学生的分析能力和归纳概括能力。

  3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

  【教具准备】

  多媒体课件和视频展示台。

  【教学过程】

  一、复习引入

  师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

  等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

  二、教学新课

  1?教学例1,理解单位“1”

  师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

  师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

  等学生分好后,抽一个学生分的小圆在视频展示台上展示。

  师:这时,小华的爸爸又提出了问题。

  课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

  引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

  师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

  多媒体课件演示下面的月饼图:

  引导学生理解两个1/4代表的数量不一样。

  师:为什么会出现这种现象呢?

  引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

  师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

  让学生意识到,整体“1”的变化对每份的.数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

  师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

  师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

  请分一分,并填空。

  课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

  引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

  师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

  板书单位“1”的含义。

  师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

  2?理解并归纳分数的意义

  师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

  学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

  师:想想自己操作的过程,你能说一说什么是分数吗?

  学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

  师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

  归纳并板书分数的意义,板书课题。

  试一试:涂色部分占整个图形的几分之几?

  师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

  生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

  师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

  3?说生活中的分数

  师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

  学生说生活中的分数。

  三、课堂小结

  (略)

  四、课堂作业

  1?第4页课堂活动第2题。

  2?练习一第1,2,3,4题。

  分数的意义

  师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

  课件出示如下的题目:

  (1)把一个月饼平均分成4份,其中的1份是这个月饼的();

  (2)把一张手工纸

五年级下册数学教案15

  教学目标:

  1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

  2、欣赏美丽的对称图形,并能自身设计图案。

  3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。

  重点难点:

  1、能利用对称、平移、旋转等方法绘制精美的图案。

  2、感受图形的内在美,培养同学的审美情趣。

  教学准备:幻灯片、课件。

  教学过程:

  一、情境导入

  利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

  二、学习新课

  (一)图案欣赏:

  1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

  2、让同学尽情发表自身的感受。

  (二)说一说:

  1、上面每幅图的图案是由哪个图形平移或旋转得到的?

  2、上面哪幅图是对称的.?先让同学边观察讨论,再进行交流。

  三、巩固练习

  (一)反馈练习:

  完成第8页3题。

  1、这个图案我们应该怎样画?

  2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

  (二)拓展练习:

  1、分别利用对称、平移和旋转创作一个图案。

  2、 交流并欣赏。说一说好在哪里?

  四、全课总结

  对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

  五、安排作业

  教材第9页第5题。

  板书设计:

  欣赏和设计

  图案1 图案2

  图案3 图案4

  对称、平移和旋转知识有广泛的应用。

【五年级下册数学教案】相关文章:

五年级下册人教版数学教案01-12

五年级下册数学教案04-04

人教版五年级下册数学教案01-09

【精】五年级下册数学教案02-02

五年级下册数学教案【热门】02-13

五年级下册数学教案【热】02-08

小学五年级下册数学教案01-03

五年级下册人教版数学教案6篇01-12

五年级下册人教版数学教案(6篇)01-12

五年级下册数学教案精选15篇01-12