- 相关推荐
《用比例解决问题》数学教案(精选9篇)
在教学工作者开展教学活动前,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?以下是小编精心整理的《用比例解决问题》数学教案,欢迎阅读与收藏。
《用比例解决问题》数学教案 篇1
学习目标:
使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。
学习重难点:
重点:运用正、反比例解决实际问题。
难点:正确判断两种量成什么比例。
学习方法:
尝试教学法、引导发现法等。
学习过程:
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求:
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
如:
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
70×4=56×5
二、探索新知
1、教学例5
(1)出示课文情境图,描述例题内容。
板书:8吨水10吨水
水费12.8元水费?元
(2)你想用什么方法解决问题?
过程要求:
①学生独立思考,寻找解决问题的方式。
②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。
①汇报解决问题的.结果。
引导提问:
A、题中哪两种量是变化的量?说说变化情况。
B、题中哪一种量一定?哪两种量成什么比例?
c、用关系式表示应该怎样写?
②板书:解:设李奶奶家上个月的水费是X元
8X=12.8×10
X=
X=16答:略
(3)与算术解比较。
①检验答案是否一样。
②比较算理。算述解答时,关键看什么不变?
板书:先算第吨水多少元?
12、8÷8=1.6(元)
每吨水价不变,再算10吨多少元。
1、6×10=16(元)
(4)即时练习。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
过程要求:
①用比例来解决。
②学生独立尝试列式解答。
③汇报思维过程与结果。
想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。
解:设王大爷家上个月用了X吨水。
12.8X=19.2×8
X=
X=12
或者:
16X=19.2×10
X=
X=12
1.教学例6。
(1)出示课文情境图,了解题目条件和问题。
(2)说一说题中哪一种量一定,哪两种量成什么比例。
(3)用等式表示两种量的关系。
每包本数×包数=每包本数×包数
(4)设末知数为X,并求解。
(5)如果要捆15包,每包多少本?
1、完成课文“做一做”。
2、课堂小结。
三、巩固练习
完成练习九第3~5题。
《用比例解决问题》数学教案 篇2
教学过程:
一、 复习
1.一辆汽车行驶的速度不变,行驶的时间和路程。
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
3、这节课,我们就应用比例的知识解决一些实际问题。
二、新授
1、教学例5
(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是元。
12.8/8=/10
8= 12.8×10
=128÷8
= 16 答:李奶奶家上个月的'水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固练习
1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习九第5、6、7题。
四、总结
用比例知识解决问题的步骤是什么?
《用比例解决问题》数学教案 篇3
【教材分析】
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。
【学情分析】
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的'困难了。例3分析的是两个量之间的关系,教学方法与例1相同。
【教学目标】
1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。
2、提高学生分析解答应用题的能力,培养探索精神。
【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。
【教学难点】分析和理解两个数量的比校对于学生来说比较难些。
【教学过程】备注
活动一:创设情境,初步感知题意。
1、教师出示例2的情境图。
2、让学生结合图叙述题意。
活动二:动手画图,分析题意。
1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?
学生动手画线段图,分析。小组交流。
与教师共同再一次感受如何画线段图。(教师板书)
重点让学生明确谁是单位1。
2、让学生说一说是怎样想的?确定解题的思路。
3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。
4、全班交流,订正。
5、问:这两种解法有什么区别?有什么联系?
活动三:教学例3.
教师出示例3。
1、引导学生读题,理解题意。
2、根据这句话应当把什么看单位1?
3、学生试画出线段图,分析数量关系。
4、学生自己解答。
订正时,让学生说说是怎样分析的?与全班交流。
活动四:巩固练习。
1、完成21页中的做一做。
教师要求学生画线段图。
2、完成练习五中部分练习题。
订正时,让学生说说分析的思路。
活动五:课堂小结。
通过本节课的学习你都有哪些收获?
《用比例解决问题》数学教案 篇4
一、教学目标:
1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。
2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。
二、 教学重点:用比例知识解决实际问题。
三、 教学难点:正确分析题中的数量关系,列出方程。
四、教学过程:
(一)、复习
1、成正比例和成反比例的量的判断。
2、用正比例解决问题的步骤。
一:找到题中不变的量;
二:根据不变的量写出关系式;
三:判断成什么比例;
四:列出比例式;
五:解比例。
(二)、探究新知
教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?
A.提出问题组织学生讨论:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
B. 根据反比例的`意义列出方程并解方程。
根据比例的意义,学生独立完成,并在小组中交流。
学生汇报:
解:设要捆元。
30=2018
= 36030
=12
答:要捆12包。
五.应用反馈 课件出示:
1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)
2. 课件上的练习题。
指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。
六.课堂小结 通过这节课的学习,你有哪些收获?
《用比例解决问题》数学教案 篇5
设计说明
本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:
1.合理复习,有效铺垫。
温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。
2.巧妙引导,拓展思维。
《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。
课前准备
教师准备 PPT课件
教学过程
复习铺垫,引入新课
1.复习铺垫。
课件出示:
(1)一辆汽车行驶的速度不变,行驶的时间和路程。
(2)一辆汽车从甲地开往乙地,行驶的速度和时间。
提出问题:
①每道题中各有哪三种量?
②其中哪种量是不变的?
③哪两种量是相关联的?相关联的'量成什么比例?(生讨论后解答)
2.引入新课。
生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)
合作交流,探究新知
1.学习例5,用正比例知识解决问题。
(1)课件出示教材61页例5主题图。
(2)学生读题思考,并汇报题中的已知条件和所求问题。
预设
生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。
生2:所求问题是李奶奶家上个月的水费是多少钱。
(3)指名完整叙述题意。
根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?
(4)讨论、交流。
师:例5的问题可以用什么方法解决?
预设
生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。
生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。
师:为什么可以用正比例知识解答?
预设
生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。
师:如何运用正比例关系列方程解答?
预设
生:解:设李奶奶家上个月的水费是x元。
=
8x=28×10
x=
x=35
答:李奶奶家上个月的水费是35元。
(5)拓展练习。
王大爷家上个月的水费是42元,上个月用了多少吨水?
(学生独立完成后汇报交流)
《用比例解决问题》数学教案 篇6
教学目标:
1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
教学重点:
用比例知识解答比较容易的归一、归总应用题。
教学难点:
正确分析题中的比例关系,列出方程。
教学过程:
一、导入新课。(课件出示)
1、判断下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?
(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。
(2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。
我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。
二、揭示目标:
1、进一步熟练地判断成正、反比例的量。
2、学会用比例知识解答比较容易的应用题
三、探究新知。
例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?
自学指导一:
1、理解题意,用以前学过的方法解答。
2、题中有哪两种量?它们成什么比例关系?并说出理由。
3、根据这样的比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?
4、解比例,检验,作答。
小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的.吨数的比值是相等的。
解:设李奶奶家上个月的水费是χ元。
8χ= 12.8×10
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元。
检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?
例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?
自学指导二:
1、题中有哪两种量?它们成什么比例关系?并说出理由。
2、根据这样的比例关系,设要捆x包。你能列出等式吗?
3解比例,检验,作答。
检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?
交流总结:解答用正、反比例解的应用题的步骤:
1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?
2、设未知数X,注上单位名称。
3、根据正、反比例的意义列出比例式。
4、解比例。
5、检验、作答。
四.巩固延伸:
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
3、500千克的海水中含盐25千克,120吨的海水含盐几吨?
课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?
课堂作业。
教科书P62练习九第3、7题。
板书设计:
用比例解决问题
1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?
2、设未知数X,注上单位名称。
3、根据正、反比例的意义列出比例式。
4、解比例。
5、检验、作答。
《用比例解决问题》数学教案 篇7
教学内容:
人教版课标教材六年级下册第59—60页 例5、例6。
教学目的:
1、让学生掌握用正、反比例的方法解决问题。
2、使学生体验由算术解法向比例解法的思维转化过程。
3、形成解题多样化技能。
教学重难点: 重点:学会用正反比例方法解决问题。
难点:在具体情境中区别用何种比例解决问题。
教学过程:
一、 复习
师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。
(出示题目)
1、a×b=c(a、b、c均不等于0)
当a一定时,b和c成什么比例?
当b一定时,a和c成什么比例?
当c一定时,a和b成什么比例?
2、速度×()=路程
工作总量÷( )=工作时间
( )×数量=总价
总本数÷( )=每包本数
每袋重量×( )=总重量
师:这节课,我们一起来学习用解决问题。
二、 新授
1、出示例5
① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。
② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。
水费:吨数=单价
③ 学生述说,教师板演用正比例解法的书写过程。
④ 出示书上第二问,学生回答列式。
巩固练习:
(1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?
(2)、我国发射的.科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?
(3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?
小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。
2、出示例6(学生自己解答)
① 抓住不变的东西----总的本数判断成反比例关系
② 建立关系式:每包本数×包数=总数
③ 学生述说,教师板演用反比例解法的书写过程。
④ 出示书上第二问,学生回答列式。
巩固练习:
(1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?
(2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?
(3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?
3、深化练习:
一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?
三、全课小结
《用比例解决问题》数学教案 篇8
一、教学目标
(一)知识与技能
在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。
(二)过程与方法
通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
(三)情感态度和价值观
主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。
【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。
二、教学重难点
教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题
教学难点:利用正比例的关系列出含有未知数的等式。
三、教学准备
课件。
四、教学过程
(一)复习回顾
1.说说正比例、反比例的相同点和不同点。
2.判断下列每题中的'两个量是不是成比例,成什么比例?
(1)已知A÷B=C。
当A一定时,B和C()比例;
当B一定时,A和C()比例;
当C一定时,A和B()比例。
(2)购买课本的单价一定时,总价和数量的关系。
(3)总路程一定时,速度和时间的关系。
【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
(二)探究新知,培养能力
1.提出问题。
教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。
课件出示教材第61页例5。
思考:题中告诉了我们哪些信息?要解决什么问题?
教师:你能利用数学知识帮李奶奶算出上个月的水费吗?
2.解决问题。
(1)学生尝试解答。
(2)交流解答方法,并说说自己的想法。
教师:谁愿意来说一说你是怎么解决的?
预设1:
28÷8×10
=3.5×10
=35(元)
(先算出每吨水的价钱,再算出10吨水需要多少钱)
预设2:
10÷8×28
=1.25×28
=35(元)
(也可以先求出用水量的倍数关系,再求总价)
教师:谁和这位同学的方法一样?
【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。
3.激励引新。
教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
课件出示以下问题,让学生思考和讨论:
(1)题目中相关联的两种量是()和( ),说说变化情况。
(2)()一定,()和()成()比例关系。
(3)用关系式表示是()。
(4)集体交流、反馈。
板书:
教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程)。
学生独立完成,教师巡视。
反馈学生解题情况。
解:设李奶奶家上个月的水费是x元。
28:8=x:10或()
8x=28×10
x=280÷8
x=35
答:李奶奶家上个月的水费是35元。
(6)将答案代入到比例式中进行检验。
教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?
(7)学生交流,汇报。
【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。
4.变式练习。
教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)
张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?
(1)比较一下此题和例5有什么联系和区别?
(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,请学生说一说是怎样想的。
5.概括总结。
教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。
学生讨论交流,汇报。
(1)分析找出题目中相关联的两种量。
(2)判断它们是否是正比例关系。
(3)根据正比例的意义列出比例。
(4)最后解比例。
(5)检验作答。
教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。
【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。
(三)巩固练习
1.只列式不计算。
(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。
(189:3=x:9)
(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。
(x:3=6:4)
2.用正比例解决问题。
(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?
(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?
【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。
(四)课堂小结,拓展延伸
同学们,谁来说说,上了这节课,你收获了什么?
【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。
【《用比例解决问题》数学教案】相关文章:
用比例解决问题教学反思04-22
用比例解决问题数学教学反思10-12
《用正比例解决问题》教学反思(精选7篇)04-29
《比和比例》数学教案 比与比例的教案02-20
数学教案:解决问题02-11
《解决问题》数学教案02-21
用智慧解决问题作文08-10
《反比例》数学教案02-17
《解决问题》数学教案15篇02-21