八年级数学教案

时间:2023-05-06 19:58:50 数学教案 我要投稿

八年级数学教案范文合集六篇

  作为一名优秀的教育工作者,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写呢?以下是小编收集整理的八年级数学教案6篇,欢迎阅读与收藏。

八年级数学教案范文合集六篇

八年级数学教案 篇1

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的.因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

八年级数学教案 篇2

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的'有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

八年级数学教案 篇3

  一、知识与技能

  1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  二、过程与方法

  1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.

  2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.

  三、情感态度与价值观

  1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.

  2、通过分组讨论,培养学生合作交流意识和探索精神.

  教学重点:理解和领会反比例函数的概念.

  教学难点:领悟反比例的概念.

  教学过程

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的`矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

  分析及解答:(1)

  ;(2)

  ;(3)

  其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

  上面的函数关系式,都具有

  的形式,其中k是常数.

  二、联系生活,丰富联想

  活动2

  下列问题中,变量间的对应关系可用这样的函数式表示?

  (1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;

  (2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

  (3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

  师生行为

  学生先独立思考,在进行全班交流.

  教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

  (1)能否从现实情境中抽象出两个变量的函数关系;

  (2)能否积极主动地参与小组活动;

  (3)能否比较深刻地领会函数、反比例函数的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果两个变量x,y之间的关系可以表示成

  的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

  活动3

  做一做:

  一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  师生行为:

  学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

  ①生能否理解反比例函数的意义,理解反比例函数的概念;

  ②学生能否顺利抽象反比例函数的模型;

  ③学生能否积极主动地合作、交流;

  活动4

  问题1:下列哪个等式中的y是x的反比例函数?

  问题2:已知y是x的反比例函数,当x=2时,y=6

  (1)写出y与x的函数关系式:

  (2)求当x=4时,y的值.

  师生行为:

  学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

  ①学生能否领会反比例函数的意义,理解反比例函数的概念;

  ②学生能否积极主动地参与小组活动.

  分析及解答:

  1、只有xy=123是反比例函数.

  2、分析:因为y是x的反比例函数,所以

  ,再把x=2和y=6代入上式就可求出常数k的值.

  解:(1)设

  ,因为x=2时,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、巩固提高

  活动5

  1、已知y是x的反比例函数,并且当x=3时,y=8.

  (1)写出y与x之间的函数关系式.

  (2)求y=2时x的值.

  2、y是x的反比例函数,下表给出了x与y的一些值:

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

  四、课时小结

  反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

八年级数学教案 篇4

  教学目标

  一、教学知识点:

  1.旋转的定义.2.旋转的基本性质.

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义.

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

  教学重点:旋转的基本性质.

  教学难点:探索旋转的基本性质.

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一.巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的.

  2.每个物体的转动都是向同一个方向转动.

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

  4.汽车的'方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

  二.讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

  议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

  解:(见课本68页)

  书上68页做一做

  三.课堂练习

  课本P69随堂练习.

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

  四.课时小结

  五.课后作业:课本P69习题3.4 1、2、3.

  六.活动与探究

  1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

  2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

  板书设计:

  教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

八年级数学教案 篇5

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  八年级数学上册教案四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的.砖,组合图形。

  五、教学设计:

  教师活动

  学生活动

  设计意图

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  (演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  (演示课件)教材65页“随堂练习”。

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

八年级数学教案 篇6

  八年级数学上册第三章平移与旋转复习教案

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1.平移

  2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。

  3.简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1.旋转

  2.旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所 成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3.简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的.图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的基本图案

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

  一.选择题:

  1.下列图形中,是由(1)仅通过平移得到的是( )

  2.在以下现象中,

  ① 温度计中,液柱的上升或下降; ② 打气筒打气时,活塞的运动;

  ③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动

  属于平移的是( )

  (A)① ,② (B)①, ③ (C)②, ③ (D)② ,④

  3. 将长度为5cm 的线段向上平移10cm所得线段长度是( )

  (A)10cm (B)5c m (C)0cm (D)无法确定

  4. 如图可以看作正△OAB绕点O通过( )旋转 所得到的

  A.3次 B.4次 C.5次 D.6次

  5.下列运动是属于旋转的是( )

  A.滾动过程中的篮球的滚动 B.钟表的钟摆的摆动

  C.气球升空的运动 D.一个图形沿某直线 对折过程

  6.ABC是直角三角形,如图(a),先将它以AB为对称轴作出它的轴对称图形,然后再平移

  得 到的图形应该是( );

  (a) A B C D

  7.下列说法正确的是( )

  A.平移不改变图形的形状和大小,而旋转则改

  变图形的形状和大小

  B.平移和旋转的共同点是改变图形的位置

  C.图形可以向某方向平移一定距离,也可以向某方向旋转一定 距离

  D.由平移得到的图形也一定可由旋转得到

  8.将图形按顺时针方向旋转900后的 图形是( )

  A B C D

  9. 下列图形中只能用其中一部分平移可以得到的是 ( ).

  (A) (B) (C) (D)

  10. 下列标志既是轴对称图形又是中心对称图形的是 ( ).

  (A) (B) (C) (D)

  11. 如图1,四边形EFGH是由四边形ABCD平移得到的,

  已知,AD=5,B=70,则下列说法中正确的是 ( ).

  (A)FG=5, G=70 (B)EH=5, F=70

  (C)EF=5,F=70 (D) EF=5,E=70

  12. 如图3,△OAB绕点O逆时针旋转90到△OCD的位置,

  已知AOB=45,则AOD的度数为( ).

  (A)55(B)45(C)40(D)35

  13. 同学们曾玩过万花筒,它是由三块等宽等长的玻璃

  片围成的.如图是看到的万花筒的一个图案,如图3中

  所有小三角形均是全等的等边三角形,其中的菱形

  AEFG可以看成是把菱形ABCD以A为中心( ).

  (A)顺时针旋转60得到 (B)逆时针旋转60得到

  (C)顺时针旋转120得到 (D)逆时针旋转120得到

  14. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是( ).

  15. 下列图形中,绕某个点旋转180能与自身重合的图形有 ( ).

  (1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆

  . (A)2个 (B)3个 (C)4个 (D)5个

  16. 如图4, △ABC沿直角边BC所在直线向右平移到

  △DEF,则下列结论中,错误的是 ( ).

  (A)BE=EC (B)BC=EF (C)AC=DF(D)△ABC≌△DEF

  二、填空题.

  1.平移是由_________________________________________所决定。

  2. 平移不改变图形的 和 ,只改变图形的 。

  3.钟表的分针匀速旋转一周需要60分,它的旋转中心是_______,经过20分,分针旋转________度。

  4.如图四边形ABCD是旋转对称图形,点__________是旋转中心,旋转了_________度后能与自身重合,则AD=____ ______,AO=__________,BO =_____________。

  5.△ 是△ 平移后得到的三角形,则△ ≌△ ,理由是

  6.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着c点 旋转 度可得到△BCD.

  7. 如图,四边形AOBC,它绕 着O点 旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是_________,旋转角是_________经过旋转点 A转到__________,点C转到__________,点B转到__________线段OA与线段________ ,线段OB与线段_ _______,线段BC与线段________是对应线段。四边形OACB与四边形ODFE的形状、大小______________。

  8.如图,图案绕中心旋转_______度(填最小度数) 次和原来图案互相重合.

  9. 如图7,已知面积为1的正方形 的对角线相交于点 ,过点 任作

  一条直线分别交 于 ,则阴影部分的面积是 .

  10. 如图9,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋

  转一定的角度后能与△CB 重合.若PB=3,则P = .

  三、解答题

  1.如图,经过平移,△ABC的顶点A移

  到了点D,请作出平移后的三角形。

  2.如图,把 绕B点逆时针方向旋转30后,

  画出旋转后的三角形。

  3.在下图中,将大写字母E绕点O按逆时针方向旋转

  90后,再向左平移4个格,请作出最后得到的图案.

  4.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG。

  (1)观察猜想BE与DG之间的大小关系,并证明;

  (2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,

  请说出旋转过程,若不存在,请说明理由。

  5.如图, ABC中, BAC= ,以BC为边向外作等边 BCD,把 ABD绕着点D按

  顺时针方向向旋转 得到 ECD的位置。若AB=3,AC=2,求 BAD的度数和线段AD

  的长度。(A、C、E在同一直线上)

  6如图,四边形ABCD的BAD=C=90,AB=AD,AEBC于E, 旋转后能与 重合。

  (1)旋转中心是哪一点? (2)旋转了多少度? (3)若AE =5㎝,求四边形AECF的面积。

  7.如图,梯形ABCD的周长为30cm,AD∥BC ,现将DC平移到AE处,AD=5cm ,求 ABE有周长。

【八年级数学教案】相关文章:

有关八年级数学教案八年级数学教案全套10-03

八年级数学教案12-04

八年级数学教案03-05

优质八年级数学教案11-02

八年级上册数学教案01-13

八年级数学教案【热】01-20

八年级数学教案【荐】02-01

八年级数学教案【精】02-01

【热】八年级数学教案01-18

【荐】八年级数学教案01-17