八年级数学教案

时间:2021-08-11 10:07:58 数学教案 我要投稿

八年级数学教案模板汇总八篇

  作为一位无私奉献的人民教师,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?下面是小编帮大家整理的八年级数学教案8篇,欢迎阅读,希望大家能够喜欢。

八年级数学教案模板汇总八篇

八年级数学教案 篇1

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案 篇2

  一、学生起点分析

  通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

  二、教学任务分析

  《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

  本节课的教学目标是:

  ①通过拼图活动,让学生感受客观世界中无理数的存在;

  ②能判断三角形的某边长是否为无理数;

  ③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

  ④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

  三、教学过程设计

  本节课设计了6个教学环节:

  第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

  第一环节:质疑

  内容:【想一想】

  ⑴一个整数的平方一定是整数吗?

  ⑵一个分数的平方一定是分数吗?

  目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

  效果:为后续环节的进行起了很好的铺垫的作用

  第二环节:课题引入

  内容:1.【算一算】

  已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?

  2.【剪剪拼拼】

  把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

  目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

  效果:巧设问题背景,顺利引入本节课题.

  第三环节:获取新知

  内容:【议一议】→【释一释】→【忆一忆】→【找一找】

  【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?

  【释一释】:释1.满足 的 为什么不是整数?

  释2.满足 的 为什么不是分数?

  【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

  【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

  目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

  效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

  第四环节:应用与巩固

  内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

  【画一画1】:在右1的正方形网格中,画出两条线段:

  1.长度是有理数的线段

  2.长度不是有理数的线段

  【画一画2】:在右2的正方形网格中画出四个三角形 (右1)

  2.三边长都是有理数

  2.只有两边长是有理数

  3.只有一边长是有理数

  4.三边长都不是有理数

  【仿一仿】:例:在数轴上表示满足 的

  解: (右2)

  仿:在数轴上表示满足 的

  【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

  它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)

  目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

  效果:加深了对“新知”的理解,巩固了本课所学知识.

  第五环节:课堂小结

  内容:

  1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?

  2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

  3.除了本课所认识的非有理数的数以外,你还能找到吗?

  目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

  效果:学生总结、相互补充,学会进行概括总结.

  第六环节:布置作业

  习题2.1

  六、教学设计反思

  (一)生活是数学的源泉,兴趣是学习的动力

  大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

  (二)化抽象为具体

  常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

  (三)强化知识间联系,注意纠错

  既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

八年级数学教案 篇3

  教学目标:

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

  二、导入新课:

  1、提出问题:(书P68页的问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值.

  一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

  也就是,在等式 =a (x0)中,规定x = .

  2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

  3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的`值.例如 表示25的算术平方根。

  4、例1 求下列各数的算术平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、练习

  P69练习 1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

八年级数学教案 篇4

  1、已知任意RtΔABC,∠C = 90,再画RtΔABC,使∠C=∠C=90,AB=AB,BC=BC。把画好的RtΔABC剪下来,放到RtΔABC上,它们全等吗?

  通过作图,发现这样所做的两个直角三角形完全重合在一起,由此可以得到结论:斜边和一条直角边分别相等的两个直角三角形_______,简写成“__________________”或“______”。

  2、用数学语言表示两个直角三角形全等。

  在RtΔABC与RtΔABC中

  AB=AB

  BC= ____

  ∴RtΔABC≌_________( )

  直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:_________、_________、_________、_________、还有直角三角形特殊的判定方法 _________。

  3、例题学习

  如图,AC⊥BC,BD⊥AD,AC=BD。求证:BC=AD

  1、两直角三角形,两直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。

  2、两直角三角形,斜边和一个锐角对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。

  3、两直角三角形,一个锐角、一条直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。

  4、两直角三角形全等的特殊条件是_________和__________对应相等。

  5、(1)如图,∠ACB=∠ADB=90,要使ΔABC≌ΔBAD,还需增加一个什么条件?把增加的条件填在横线上,并在后面的括号填上判定全等的理由。

  ①________________( )

  ②________________( )

  (2)如图所示,AC=AD,∠C=∠D=90,你能说明BC=BD吗?

  6、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面的两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。

  1、如图所示,有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC与∠DFE有什么关系?

  2、如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,

  若AB=CD,AF=CE,BD交AC于M点。(1)求证:MB=MD,ME=MF;(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。

  四、

  课后反思:_____________________________________________________。

八年级数学教案 篇5

  分式方程

  教学目标

  1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

  2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

  教学重点:

  将实际问题中的等量 关系用分式方程表示

  教学难点:

  找实际问题中的等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

  根据题意,可得方程___________________

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

  这 一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

  根据题意,可得方程_ _____________________。

  学生分组探讨、交流,列出方程.

  三.做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

  四.议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、 随堂练习

  (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

  (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

  六、学 习小结

  本节课你学到了哪些知识?有什么感想?

  七.作业布置

八年级数学教案 篇6

  一、教学目标

  1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

  2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

  3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

  4.引导学生不断小结运算方法和技巧,提高运算能力。

  二、教学重点和难点

  1.重点:分式的加减运算。

  2.难点:异分母的分式加减法运算。

  三、教学方法

  启发式、分组讨论。

  四、教学手段

  幻灯片。

  五、教学过程

  (一)引入

  1.如何计算:2.如何计算:3.若分母不同如何计算?如:

  (二)新课

  1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依据:分式的基本性质。

  3.通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  例1通分:

  (1)解:∵最简公分母是,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  (2)解:

  例2通分:

  (1)解:∵最简公分母的是2x(x+1)(x—1),

  小结:当分母是多项式时,应先分解因式。

  (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

  练习:教材P,79中1、2、3。

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

八年级数学教案 篇7

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注重纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  动画演示:

  场景五:平行四边形、矩形、菱形、正方形之间的关系

  场景六:平行四边形、矩形、菱形、正方形之间的性质关系

  师:当然平行四边形、矩形、菱形和正方形它们之间的关系还可以用下图(图1)表示:

  图1

  师:请同学们把平行四边形、矩形、菱形和正方形它们之间的关系以及平行四边形、矩形、菱形和正方形它们之间的性质关系整理在笔记本上。

  例题讲解

  例1 在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE

  分析:据已知条件画出图形,如图2所示,要证实线段相等,与图形可以证实二个三角形全等,即只需证实△ABG≌△AEC。

  证实:∵四边形ABDE和ACFG都是正方形

  ∴AB=AE,AG=AC

  ∠BAE=∠CAG=90°

  ∴∠BAE ∠BAC=∠CAG ∠BAC

  即∠BAG=∠EAC

  ∴△ABG≌△AEC ∴BG=CE

  图2

  说明:应用正方形的性质,可以为证实全等提供条件,要注重等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。

  巩固练习

  巩固练习题目可有教师根据学生情况自主选择。

  讲解新课

  师:正方形是非凡的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?

  生:证一组邻边相等。

  师:怎么判定一个菱形是正方形?

  生:证有一个角是直角。

  师:怎么判定一个平行四边形是正方形?

  生:根据定义,证有一组邻边相等且有一个角是直角。

  师:那么,刚才的结论假如用图来表示,是不是如图2所示?

  师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?

  [学生活动:积极思考,部分学生迷惑不解。]

  师点取上等学生回答问题,根据回答得图4。

  学生恍然大悟。

  学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。

  就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证实思路。

  为进一步理解正方形的判定方法,可研究以下几个问题:

  (1)对角线相等的菱形是正方形吗?

  (2)对角线互相垂直的矩形是正方形吗?

  (3)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?

  (4)能说“四条便都相等的四边形是正方形吗?”

  (5)四个角都相等的四边形是正方形吗?

  小结:证实正方形的思路,总体讲三种思路,如图4所示;碰到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。

  动画演示:

  场景七:正方形的判定

  例题讲解

  例2 如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,

  求证:AD=AM。

  分析:欲证AD=AM,只需证实∠1=∠2,但要根据题目条件直接证实∠1=∠2比较困难,考虑到E、F是正方形的两边中点,轻易证实得:△BCF≌△CDF,得∠3=∠4,而∠4 ∠BCF=90°。由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证实A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。

  证实:略。

  说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中经常出现,要注重隐含的这个垂直条件。

  课堂练习题及课后作业可由教师根据学生情况自主选择。

八年级数学教案 篇8

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  八年级数学上册教案四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  教师活动

  学生活动

  设计意图

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  (演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  (演示课件)教材65页“随堂练习”。

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

【八年级数学教案模板汇总八篇】相关文章:

小学数学教案模板汇总6篇01-31

小学数学教案模板汇总8篇12-24

小学数学教案模板汇总六篇03-13

小学数学教案模板汇总10篇01-06

小学数学教案模板汇总五篇10-13

小学数学教案模板汇总7篇10-09

小学数学教案模板汇总5篇10-01

【实用】小学数学教案模板汇总7篇03-27

有关小学数学教案模板汇总8篇02-19

【推荐】小学数学教案模板汇总8篇01-02