八年级数学教案

时间:2023-05-06 17:09:16 数学教案 我要投稿

八年级数学教案合集九篇

  作为一名老师,时常会需要准备好教案,借助教案可以更好地组织教学活动。如何把教案做到重点突出呢?以下是小编整理的八年级数学教案9篇,仅供参考,大家一起来看看吧。

八年级数学教案合集九篇

八年级数学教案 篇1

  一、教学目标

  1.理解一个数平方根和算术平方根的意义;

  2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3.通过本节的训练,提高学生的逻辑思维能力;

  4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合

  四、教学手段

  幻灯片

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  ( )2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1.一个正数有两个平方根,它们互为相反数。

  2.0有一个平方根,它是0本身。

  3.负数没有平方根。

  (四)开平方

  求一个数a的'平方根的运算,叫做开平方的运算。

  由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:1.用正确的符号表示下列各数的平方根:

  ①26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

  ②247的平方根是

  ③0。2的平方根是

  ④3的平方根是

  ⑤ 的平方根是

  由学生说出上式的读法。

  例1。下列各数的平方根:

  (1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根为±9。即:

  (2)

  的平方根是 ,即

  (3)

  的平方根是 ,即

  (4)∵(±0。7)2=0。49,

  ∴0。49的平方根为±0。7。

  小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。

  六、总结

  本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。

  七、作业

  教材P。127练习1、2、3、4。

  八、板书设计

  平方根

  (一)概念 (四)表示方法 例1

  (二)性质

  (三)开平方

  探究活动

  求平方根近似值的一种方法

  求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。

  例1。求 的值。

  解 ∵92102,

  两边平方并整理得

  ∵x1为纯小数。

  18x1≈16,解得x1≈0。9,

  便可依次得到精确度

  为0。01,0。001,……的近似值,如:

  两边平方,舍去x2得19.8x2≈—1.01

八年级数学教案 篇2

  一、 教学目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,能熟练地求出分式有意义的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件.

  2.难点:能熟练地求出分式有意义的条件.

  三、课堂引入

  1.让学生填写P127[思考],学生自己依次填出:,,,.

  2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的'流速为v /h.

  轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

  3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

  四、例题讲解

  P128例1. 当下列分式中的字母为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母的取值范围.

  [补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  六、课后练习

  1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何值时,分式 的值为0?

八年级数学教案 篇3

  【教学目标】

  1、了解三角形的中位线的概念

  2、了解三角形的中位线的性质

  3、探索三角形的中位线的性质的一些简单的应用

  【教学重点、难点】

  重点:三角形的中位线定理。

  难点:三角形的中位线定理的证明中添加辅助线的思想方法。

  【教学过程】

  (一)创设情景,引入新课

  1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

  2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

  (1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

  (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

  3、引导学生概括出中位线的概念。

  问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

  启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

  4、猜想:DE与BC的关系?(位置关系与数量关系)

  (二)、师生互动,探究新知

  1、证明你的猜想

  引导学生写出已知,求证,并启发分析。

  (已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

  启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

  启发2:证明线段的倍分的.方法有哪些?(截长或补短)

  学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

  证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

  ∴DF∥BC(根据什么?),

  ∴DE 1/2BC

  2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

  (三)学以致用、落实新知

  1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

  2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

  3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

  求证:四边形EFGH是平行四边形。

  启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

  启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

  证明:如图,连接AC。

  ∵EF是⊿ABC的中位线,

  ∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

  挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

  (四)学生练习,巩固新知

  1、请回答引例中的问题(1)

  2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

  (五)小结回顾,反思提高

  今天你学到了什么?还有什么困惑?

八年级数学教案 篇4

  教材分析

  本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

  学情分析

  本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

  从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

  教学目标

  1、知识与技能:

  掌握同底数幂乘法的`运算性质,能熟练运用性质进行同底数幂乘法运算。

  2、过程与方法:

  (1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;

  (2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

  3、情感态度与价值观:

  (1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

  (2)通过性质的推导体会“特殊。

八年级数学教案 篇5

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的`方法,从学生熟知的知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

八年级数学教案 篇6

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的'四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案 篇7

  一、回顾交流,合作学习

  【活动方略】

  活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

  【问题探究1】(投影显示)

  飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

  思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

  【活动方略】

  教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

  学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

  【问题探究2】(投影显示)

  一个零件的`形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

  思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

  【活动方略】

  教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

  学生活动:思考后,完成“问题探究2”,小结方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD为直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此这个零件符合要求.

  【问题探究3】

  甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

  思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

  【活动方略】

  教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

  学生活动:课堂练习,与同伴交流或举手争取上台演示

八年级数学教案 篇8

  5 14.3.2.2 等边三角形(二)

  教学目标

  掌握等边三角形的性质和判定方法.

  培养分析问题、解决问题的能力.

  教学重点

  等边三角形的性质和判定方法.

  教学难点

  等边三角形性质的应用

  教学过程

  I创设情境,提出问题

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

  II例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

  ①在边AB、AC上分别截取AD=AE.

  ②作∠ADE=60°,D、E分别在边AB、AC上.

  ③过边AB上D点作DE∥BC,交边AC于E点.

  2.已知:如右图,P、Q是△ABC的边BC上的.两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  III课堂小结

  1、等腰三角形和性质

  2、等腰三角形的条件

  V布置作业

  1.教科书第147页练习1、2

  2.选做题:

  (1)教科书第150页习题14.3第ll题.

  (2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

  (3)《课堂感悟与探究》

  5

八年级数学教案 篇9

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的`定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

【八年级数学教案】相关文章:

有关八年级数学教案八年级数学教案全套10-03

八年级数学教案12-04

八年级数学教案03-05

【热门】八年级数学教案01-31

八年级数学教案【热】01-20

【荐】八年级数学教案01-17

八年级数学教案【热门】01-18

八年级数学教案【推荐】01-20

优质八年级数学教案11-02

【精】八年级数学教案01-21