六年级数学《圆锥的体积》优秀教案(通用13篇)
作为一位无私奉献的人民教师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?下面是小编精心整理的六年级数学《圆锥的体积》优秀教案,欢迎大家分享。
六年级数学《圆锥的体积》优秀教案 篇1
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学过程
一、创设情境,引发猜想
1. 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2. 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
1. 小组实验。
(1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的.。
(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。
2. 大组交流。
(1)组织收集信息。
学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:
① 圆柱的体积正好是圆锥体积的3倍。
② 圆柱的体积不是圆锥体积的3倍。
③ 圆柱的体积正好是圆锥体积的8倍。
④ 圆柱的体积正好是圆锥体积的5倍。
⑤ 圆柱的体积是等底等高的圆锥体积的3倍。
⑥ 圆锥的体积是等底等高的圆柱体积的1/3 。
(2)引导整理信息。
指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)
(3)参与处理信息。
围绕3倍关系的情况讨论:
① 请这几个小组同学说出他们是怎样通过实验得出这一结论的?
② 哪个小组得出的结论更加科学合理一些?
圆锥的体积是等底等高的圆柱体积的1/3。
(突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)
③引导学生自主修正另外两个结论。
3. 诱导反思。
(1)为什么有两个小组实验的结果不是3倍关系呢?
(2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?
4. 推导公式。
尝试运用信息推导圆锥的体积计算公式。
(1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
5. 问题解决。
童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。
三、运用公式,解决问题
1. 教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?
2. 学生尝试行算,指名板演,集体订正。
3. 引导小结:不要漏乘1/3;计算时,能约分时要先约分。
四、巩固练习,拓展深化(略)
五、质疑问难,总结升华
通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?
回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示。
六年级数学《圆锥的体积》优秀教案 篇2
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:
一、创设情境,引发猜想
在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的'雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
1、出示学习提纲
(1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?
(2) 你们小组是怎样进行实验的?
(3) 你能根据实验结果说出圆锥体的体积公式吗?
(4) 要求圆锥体积需要知道哪两个条件?
2、小组合作学习
3、回报交流
结论:圆锥的体积是等底等高的圆柱体积的1/3。
公式:V=1/3Sh
4、问题解决
小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?
5、运用公式解决问题
教学例题1和例题2
三、巩固练习
1、圆锥的底面积是5,高是3,体积是()
2、圆锥的底面积是10,高是9,体积是()
3、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
4、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.( )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )
四、拓展延伸
一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?
五、谈谈收获
六、作业
六年级数学《圆锥的体积》优秀教案 篇3
一、教材分析
圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.
二、教学过程
(一)引出课题
1、师:同学们,看一看祝老师手中拿的是什么?
生:这是一个圆锥体.
2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?
生:可以,我们可以用排水法来求出它的体积.
师:如果是一个很大的一个圆锥体还用这种办法,会怎样?
生:能求出来但会很麻烦.
师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)
(二)实验探究推导公式
1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?
生:圆柱体
2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)
学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.
师:其他种和他们一样吗?
生:不一样.
师:谁还愿意汇报.
生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.
生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍
2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?
生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。
3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的.三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。
(三)巩固练习
1、判断
(1)圆柱体的体积是圆锥体体积的3倍。 ( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )
(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )
2、解决问题
(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?
(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?
(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?
三、教学反思
这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。
1、难点分散。
针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。
2、导入的新颖。
情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。
3、教学手段和练习配套。
教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。
4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。
六年级数学《圆锥的体积》优秀教案 篇4
教学目标
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学过程
一、圆锥体积的计算公式的推导过程。
圆锥体积计算公式的理解。
小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。一、情景铺垫,引入课题
教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。
屏幕上出示问题:到底选哪种蛋糕划算呢?
教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?
教师抽学生回答问题。
可能会出现以下几种情形:
第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。
第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。
第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。
教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?
学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。板书课题:圆锥的体积
二、自主探究,感悟新知
1.提出猜想,大胆质疑
教师:谁来猜猜圆锥的体积怎么算?
学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……
对学生的各种猜想,教师给予肯定和表扬。
2.分组合作,动手实验
教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用投影仪展示实验报告单
圆锥的体积实验报告单
第()小组记录人:
名称底面半径最初水面高度最后水面高度水面上升高度体积
圆柱
圆锥
结论
反馈信息。各小组交流实验方法和结果。
教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?
方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=13×圆柱的体积。
方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。
方案三:我们组与前两小组的方法不一样。我们是用两个同样大的水槽装同样多的水,在水面的位置分别作好标记,然后把这两个实心的圆柱和圆锥分别放入两个水槽中,在升高后的水面分别作好标记,算出两个水槽水面上升的高度,发现放圆柱形水槽的水面上升的高度是放圆锥形水槽水面高度的三倍。因为两个水槽底面一样大也就是底面积相等,由圆柱的体积计算公式算出两个水槽中水的体积,发现圆锥的体积是圆柱的体积的三分之一。因此我们组得出的结论是:圆锥的体积是与它等底等高圆柱体积的三分之一。
教师:三个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。
教师把学生们的实验过程用小黑板演示一遍,让学生再经历一次圆锥体积的探究过程。
4.公式推导
教师:圆柱的体积怎样计算?圆锥的.体积又怎样计算?
教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。
板书:圆柱的体积=底面积×高
V=S×H
↓〖4↓〖6↓
圆锥的体积=13×底面积×高
V=13×S×H
教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?
抽学生回答,教师板书:V=13SH
教师引导学生理解公式,弄清公式中的S表示什么,H表示什么。
要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。
5.拓展
教师:是不是底和高不相等的圆锥体积也是圆柱体积的三分之一呢?我们来做个实验。
教师利用学生的实验器材进行演示。
用两个等底不等高的圆柱和圆锥装水;再用两个等高不等底的圆柱和圆锥装水,两次结果都没得到圆锥体积是圆柱体积的三分之一,进一步让学生体会等底等高的含义。
6.运用所学知识解决问题
教学例1。
一个铅锤高6CM,底面半径4CM。这个铅锤的体积是多少立方厘米?
学生读题,找出题中的条件和问题。
引导学生弄清铅锤的形状是圆锥形。
学生独立解答。抽学生上台展示解答情况并说出思考过程。
三、拓展应用,巩固新知
1.教科书第42页第1题
学生独立解答,集体订正。
2.填一填
(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。
(2)等底等高的圆柱的体积是圆锥体积的()倍。
抽生回答,熟悉圆锥的体积计算公式。
3.把下列表格补充完整
形状底面积S(M2)高H(M)体积V(M3)
圆锥159
圆柱160.6
学生在解答时,教师巡视指导。
4.教科书第42页练习九第2题
分组解答,抽生板算。教师带领学生集体订正。
5.应用公式解决实际问题
教师:现在我们再来帮助这两个同学解决他们的难题。
要求学生独立解答新课前买蛋糕的问题。
抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。
教师引导学生明白生活中的许多现象中都藏着数学问题,只要留心观察就能得出结论。这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?
六年级数学《圆锥的体积》优秀教案 篇5
【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】
圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】
圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的`知识教学,他们一定能表现出极大的热情。
【教法学法】
试验探究法小组合作学习法
【教具学具准备】
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
【教学课时】
2课时
【教学流程】
第一课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底等高
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
教学预设:
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用提升技能
1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议
2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议
3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议
【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:
这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四第4、7题
2、坐在作业本上作业:练习四第3题
六年级数学《圆锥的体积》优秀教案 篇6
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程:
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高 6 厘米,体积 = ?
(2)底面半径是 2 分米,高10分米,体积 = ?
(3)底面直径是 6 分米,高10分米,体积 = ?
3、认识圆锥(课件演示),并说出有什么特征?
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)
1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?
学生回答,教师板书:
圆柱------(转化)------长方体
圆柱体积计算公式--------(推导)长方体体积计算公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)
(学生得出:底面积相等,高也相等。)
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?
(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的.圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
(教师给体积公式与“等底等高”四个字上连线。)
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3
=底面积 × 高×1/3
V = 1/3Sh
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
课件出示:
想一想,讨论一下:?
(1)通过刚才的实验,你发现了什么?
(2)要求圆锥的体积必须知道什么?
学生后讨论回答。
三、 应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
a、 学生完成后,进行小组交流。
b 、 你是怎样想的和怎样解决问题的。(提问学生多人)
c 、 教师板书:
1/3×19×12=76(立方厘米)
答:它的体积是76立方厘米
3 、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
5、比较:例1和例2有什么不同的地方?
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。
六年级数学《圆锥的体积》优秀教案 篇7
教学目标
1.理解求圆锥体积的计算公式。
2.会运用公式计算圆锥的体积。
3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学过程
一、铺垫孕伏
1.提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的`计算公式
1.教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2.学生分组实验。
学生汇报实验结果:
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
4.引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。
板书:
5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。
6.思考:要求圆锥的体积,必须知道哪两个条件?
7.反馈练习
圆锥的底面积是5,高是3,体积是( )。
圆锥的底面积是10,高是9,体积是( )。
(二)算一算
学生独立计算,集体订正。
说说解题方法。
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
六年级数学《圆锥的体积》优秀教案 篇8
【教学目标】
1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。
2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。
【重点难点】
圆锥体积公式的推导过程。
【教学准备】
同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。
【情景导入】
1、复习旧知,作出铺垫。
(1)教师用电脑出示一个透明的圆锥。
教师:同学们仔细观察,圆锥有哪些主要特征呢?
(2)复习高的概念。
A、什么叫做圆锥的高?
B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
2、创设情境,引发猜想。
(1)电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)
(2)引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的`小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。
【新课讲授】
自主探究,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。
出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?
(1)小组实验。
A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)
B、同组的学生做完实验后,进行交流,并把实验结果写在黑板上。
(2)全班交流。
①组织收集信息。
学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:
A、圆柱的体积正好等于圆锥体积的3倍。
B、圆柱的体积不是圆锥体积的3倍。
c、圆柱的体积正好等于圆锥体积的8倍。
D、圆柱的体积正好等于圆锥体积的5倍。
E、圆柱的体积是等底等高圆锥体积的3倍。
f、圆锥的体积是等底等高圆柱体积的。
②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)
③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?
圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。
(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?
(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?
(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)
【课堂作业】
完成教材第34页“做一做”第1题。
先组织学生在练习本上算一算,然后指名汇报。
答案:13×19×12=76(cm3)
【课堂小结】
教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。
【课后作业】
1、完成练习册中本课时的练习。
2、教材第35页第3、4、5题。
答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。
第4题:(1)25、12(2)423、9
第5题:(1)×(2)√(3)×
六年级数学《圆锥的体积》优秀教案 篇9
教学目标
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
教学重点和难点
圆锥体体积公式的推导。
教学过程设计
(一)复习准备
1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。
这是什么体?(圆锥体)
(板书:圆锥)
上节课我们已经认识了圆锥体,这里有几个画好的几何形体。
(出示幻灯)
一起说,几号图形是圆锥体?(2号)
(指着圆锥体的底面)这部分是圆锥体的什么?(底面)
(指着顶点)这呢?
哪是圆锥体的高?(指名回答。)
(用幻灯出示几个图形。)
在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。
(学生举卡片反馈)
你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)
那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)
看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。
(板书,在“圆锥”二字的后面写“的体积”。)
(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的`认识。)
(二)学习新课
(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?
(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)
看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。
为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)
为什么?(因为圆锥体的体积小)
(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。
(学生分组做实验。)
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?
(学生发言。)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(不是)
是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?
(因为是等底等高的圆柱体和圆锥体。)
呢?(在等底等高的情况下。)
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。
(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)
(三)巩固反馈
1.口答。
填空:
2.板书例题。
例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?
(指名回答,老师板书。)
=20(cm3)
答:它的体积是20cm3。
3.练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。
(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。
(学生在小黑板上只写结果,举黑板反馈。)
你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。
5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。
(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是( )(dm3)。
②3a(dm3)
③a3(dm3)
(举卡片反馈,订正。)
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是( )cm3。
(学生举卡片反馈,订正。)
6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)
为什么?(因为不知道底面积和高。)
需要测量什么?(底面半径和高。)
怎么测量?(小组讨论。)
(指名发言)
今天回家后,把你们测量的数据写在本子上,再计算出体积。
这节课我们学了什么知识?
出思考题:
现在我们比一比谁的空间想象能力强。
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。
(四)指导看书,布置作业
六年级数学《圆锥的体积》优秀教案 篇10
教学目标:
1.组织学生参与实验,从而推导出圆锥体积的计算公式。
2.会运用圆锥的体积计算公式计算圆锥的体积。
3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。
4.以小组形式参与学习过程,培养学生的合作意识。
5.渗透转化的数学思想。
教学重点:
理解和掌握圆锥体积的计算公式。
教学难点:
理解圆柱和圆锥等底等高时体积间的倍数关系。
教学资源:
等底等高的圆柱和圆锥容器一套,一些沙或米等。
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)
2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)
3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)
4.大家觉得我们今天要研究的`圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?
5.它们的体积之间到底有什么关系呢?
二、实验操作、推导圆锥体积计算公式。
1.课件出示例5。
(1)通过演示使学生知道什么叫等底等高。
(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
2.教师课件演示
3.学生讨论实验情况,汇报实验结果。
4.启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3
用字母表示:V= 1/3Sh
小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?
5.教学试一试
(1)出示题目
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、发散练习、巩固推展
1.做练一练第1.2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。
2.做练习四第1.2题。
学生做在课本上。之后学生反馈。错的要求说明理由。
四、小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
学生交流
五、作业
练习四第3题。
六年级数学《圆锥的体积》优秀教案 篇11
教学目标:
1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。
2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程
3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。
教学重难点:
教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。
教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。
教具学具:
1、等底等高的圆柱和圆锥型容器,一些沙子。
2、多媒体。
教学流程:
一、炫我两分钟
主持学生指名叫学生回答下列问题:
1.圆柱有几个面?各有什么特点?
2.怎样计算圆柱的体积?
学生回答问题。
【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】
二、创设情境
1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?
2、出示问题情境:
最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)
【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】
三、探究新知
尝试小研究一(课前):了解圆锥的特点
1.观察圆锥形的物体或图片,它们有哪些特点?
我的发现:
2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的.侧面是一个( ) 。
3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。
4.怎样计算圆锥的体积?
我的猜想:( )
尝试小研究二(课上):推导圆锥体积的计算公式
1、引导学生借助圆柱,探讨圆锥的体积公式。
①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?
②、是怎样推导的呢?你有什么想法?
下面我们就用实验的方法来推导圆椎的体积公式。
老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?
2、用实验的方法,推导圆锥的体积公式。
①、引导学生观察用来实验的圆锥、圆柱的特点。
其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)
②、学生实验:
你想怎么实验?(小组可以议一议)(老师指导:倒一下)
请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)
A:你们小组是怎样进行实验的?
B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?
C:根据这个关系怎样求出圆锥的体积?
(教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)
③、学生交流汇报,完成计算公式的推导:
小组汇报,师板书。
圆锥的体积等于和它等底等高的圆柱体积的三分之一。
V=1/3Sh
【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】
四、解决问题,巩固练习
(一)运用这个公式解决老师提出的问题,帮助老师解决问题。
1、 学生试做。
2、对子同学交流。
3、小组交流。
4、展示汇报。
(二)判断: 用手势来回答
1、圆柱的体积是圆锥体积的3倍。( )
2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )
3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )
(三)完成教材第42页“试一试”。
【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】
五、盘点收获
通过这节课的学习,你有什么收获?你还想了解哪些知识
【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】
六、拓展延伸
教材第42页“练一练”第4题。
【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学于生活并应用于生活。】
六年级数学《圆锥的体积》优秀教案 篇12
一.教材依据
本节课所讲的《圆锥的体积》是九年义务教育人教实验版,第十二册第二章第二节的内容。
二.设计思想
为了落实素质教育,积极推进新改革,充分发挥学生的主体作用,甘做学生的朋友,引导其积极主动地进行探究性学习。通过“小组活动”、“合作探究”全面调动每一位学生的学习积极性和参与性。通过学生的自主学习、互助学习,自主探究所学的内容,完全改变过去被动的“填鸭式”的教学模式,切实提高课堂效率。
本节教材我想通过向等底等高的圆柱和圆锥中倒水或沙的实验,得到圆锥体积的计算公式V=1/3sh.即就是等底等高的圆锥体积是圆柱体积的三分之一。例2是已知圆锥形沙堆的底面直径和高,求沙子的体积。这是一个简单的实际问题,通过这个例子教学使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。前面学生对圆锥、圆柱立体图形的特征已进行了学习,对其特征也有了较深刻的认识,可以熟练地计算圆柱的体积、表面积、侧面积。这是学习本节课的基础。
三.教学目标
知 识 技能:理解并掌握圆锥体积的计算方法,能运用公式解决
简单的实际问题。
过程与方法:在实践操作中掌握圆锥体积公式的推导。
情 感 态度:培养学生乐于学习,热爱生活,勇于探索的精神。
四.教学重点
进一步理解圆锥的体积公式,能运用公式进行计算,能解决
简单的实际问题。
五.教学难点:圆锥体积公式的推导。
六、教法选择
利用多媒体、观察法、实验法、师生互动启发式教学
七、学法指导
观察实验 —合作探究—达标反馈— 归纳总结
八.教学准备
多媒体课件、同样的圆柱形容器若干、与圆柱等底等高的圆锥形容器若干、水和沙土。
九.教学过程
【复习旧知】
1. 课件展示圆柱和圆锥的立体图形,并请学生说出图形各部分的名称。
2. 圆柱的体积公式是什么?
【创设情境,引发猜想】
1.多媒体课件呈现出动画情景故事(配音乐):
盛夏的一天,森林里闷热极了,小动物们热得喘不过气来,都想吃点解暑的东西。漂亮的小白兔去冷饮店买了一块圆柱形的冰麒麟,聪明的狐狸拿着一块圆锥形的冰麒麟想和它交换…… (多媒体课件展示两块冰麒麟等底等高)
2.引导学生围绕问题展开讨论。
问题一:小白兔上当了吗?
问题二:狐狸和小白兔怎样交换才算公平?
3. 导入新课,板书课题:同学们,要解决这些问题我们就来学习《圆锥的体积》这一节课,然后帮帮小白兔好吗?
【自主探索,动手实验】
出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们小组是怎样实验的?
1. 小组实验。按照实验程序要求和注意事项(多媒体课件展示)
每四人为一小组,各小组长带领三个成员动手操作实验,教师在教室巡回指导。
2. 全班交流。
组织收集信息 —— 引导整理信息 —— 参与处理信息
3. 引导反思。实验过程让学生积极发散思维,各抒己见。
4. 公式推导。
全班同学集体观看多媒体课件的实验过程,并结合自己的'实验活动试着推导圆锥的体积计算公式。
圆柱的体积等于和它等底等高的圆锥体积的3倍;或者圆锥的体积等于和它等底等高的圆柱体积1/3。
用字母表示为: V=1/3sh
5.思考:如果要计算圆锥的体积,必须知道那些条件?
6.问题解决。
故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(课件出示:等底等高)
【运用公式,解决问题】
例2:建筑工地上有许多沙子,堆起来近似一个圆锥,这堆沙子大约
有多少立方米?(结果保留两位小数)
具体解题过程让同学们自己大显身手,个别学生可以上讲台板演,然后教师作最后讲评。
【练习巩固】课件出示,师生共同完成。
一.判断。
1、圆柱体的体积一定比圆锥体的体积大。 ( )
2、圆锥的体积等于和它等底等高的圆柱体的。 ( ) 3、正方体、长方体、圆锥体的体积都等于底面积×高。( ) 。
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。( )
二.填表。
已 知 条 件 体积
圆锥底面半径2厘米,高9厘米
圆锥底面直径6厘米,高3厘米
圆锥底面周长6.28分米,高6分米
【拓展延伸】:
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
【质疑问难,总结升华】
通过这节课的学习,你们对圆锥的体积有哪些新的认识?请谈谈自己的感想和收获。
【作业布置】
课本25页第3、5、8题
六年级数学《圆锥的体积》优秀教案 篇13
教学目的:
1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系。
教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.
(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )还可以怎么说?
板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh
拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?
强调:“等底等高”。
问:Sh表示什么?为什么要乘1/3?
练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
说明:不要漏乘1/3,计算时能约分的要先约分。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的`底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
三、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题:
① 这道题已知什么?求什么?
② 求圆锥的体积必须知道什么?
③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题:
① 圆柱的侧面积等于多少?
② 圆柱的表面积的含义是什么?怎样计算?
③ 圆柱体积的计算公式是什么?
④ 圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
四、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
【六年级数学《圆锥的体积》优秀教案】相关文章:
《圆锥的体积》数学教案优秀12-21
圆锥的体积教案02-24
小学六年级数学《圆锥的体积》教案优秀08-28
六年级数学教案《圆锥的体积》03-05
六年级数学下册《圆锥的体积》教案06-28
人教版六年级下册数学《圆锥的体积》教案03-12
人教版六年级下册《圆锥的体积》数学教案01-17
苏教版六年级下册《圆锥的体积》数学教案01-17