《比的化简》数学教案设计

时间:2024-07-04 23:05:04 赛赛 数学教案 我要投稿
  • 相关推荐

《比的化简》数学教案设计(通用14篇)

  作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。那么大家知道正规的教案是怎么写的吗?以下是小编收集整理的《比的化简》数学教案设计,仅供参考,希望能够帮助到大家。

  《比的化简》数学教案设计 1

  教学目标:

  1、在实际 情境中体会化简比的必要性,进一步体会比的含义。

  2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  3、感受数学知识的内在联系。

  教学重点:

  比的化简的方法。

  教学难点:

  运用比的化简,解决一些简单的实际问题。

  教学过程:

  一、复习铺垫,激趣引新。

  (一)复习铺垫。

  1、比的意义以及比的各部分的名称。

  师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9)

  师:师举一个例子问:叫?4呢?5呢?

  2、比与除法、分数之间的联系与区别。

  (1)在除法中,我们学过了商不变性质,谁还记得?

  在分数中,分数的基本性质又是怎样?

  (2)师:你知道比与除法、分数之间有什么联系与区别?

  [设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]

  (二)激趣,揭示课题。

  过渡:昨天我们学习了《生活中的比》,今天我们要来学习《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)

  [设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]

  二、探索新知。

  活动一:学一学。

  课件出示主题图:淘气和笑笑的对话。

  学生带着思考题,看书学习。(思考题①有什么方法比较哪杯水更甜?②如何化简比?③比的化简与分数的约分有什么区别?

  [设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]

  活动二:说一说。(反馈看书、自学情况)

  ①学生汇报比较方法,师根据学生的回答板书。

  ②教学比的化简。40:360= 40/360= 1/9 =1:9 2:18=2/18= 1/9 =1:9

  ③比较:(生说,师重点强调,突出对应思想:A、 比的前项是分子,后项是分母,然后约分。B、约分是写成最简分数,化简比到最后应化成最简整数比。C、引导学生小结化简比的方法。

  [设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]

  活动三:化简比。14:21 0.5:2.5 2/9 :1/3

  (1)请三位同学上去板演,其他做在练习本上。

  (2)反馈,集体订正:请这三位同学说说,你是怎么化简的?

  (3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论:①3道题有什么不同点,它们各用什么方法进行化简的?②1、2题化简比的过程中,比的前项和后项如何变化的`?请小组讨论后回答,师根据学生的回答小结:

  整数比:可以根据商不变的性质或像分数约分那样进行化简。

  小数比:可以先利用商不变的性质将其转化为整数比,然后在化简

  分数比:可以前项除以后项,再根据比值写出最简单的整数比。

  相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。

  (4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)

  [设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]

  活动四:练一练。

  1、化简比。15:21 0.12:0.4 2/3 : 1/2 1:2/3

  2、连一连,完成P53的第1题。

  3、大正方形边长是4厘米,小正方形边长是3厘米。

  大、小正方形边长的比是(答案),比值是(答案);大、小正方形周长的比是(答案),比值是(答案);大、小正方形面积的比是(答案),比值是(答案)。

  [设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]

  活动五:课堂总结。

  今天你学会了什么知识?

  《比的化简》数学教案设计 2

  教材分析:

  《比的化简》是北师大版六年级数学上册第72—73页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比与除法、分数的关系,体会化简比的必要性,学会化简比的方法。

  设计理念:

  在这之前,学生早已学过“商不变规律”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,而且学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。

  教学目标:

  1、知识技能:

  会运用比的基本性质化简比,并能解决一些简单的实际问题。

  2、数学思考与问题解决:

  在实际情境中体会化简比的重要性,并进一步体会比的含义。

  3、情感态度:

  在化简比的同时感受数学的应用价值,体会数学知识的内在联系。

  教学重点:

  正确应用比的基本性质化简比。

  教学难点:

  根据比的基本性质解决生活中的实际问题。

  教学方法:

  尝试法

  教具学具:

  多媒体课件。

  教学过程:

  一、 复习铺垫

  1、回顾比、除法和分数的联系。

  3 :5 = ( )÷( )= ( )/( )

  2、复习商不变规律、分数的`基本性质。

  A、10÷5= 20 ÷( )=( )÷ 1 = ( )

  【归纳商不变规律】

  B、12/18 = 6/( ) = ( )/3

  【归纳分数基本性质并说明最简分数】

  3、利用B题引导学生归纳比的基本性质。(板书)

  4、课件出示教材第72页情境图

  问题:

  男孩和女孩各自调制了一杯蜂密水,男孩调制这杯蜂蜜水用了3小杯蜂蜜、12小杯水,女孩调制这杯蜂蜜水用了4小杯蜂蜜、16小杯水。请大家想一想,哪杯水更甜?

  你现在能判断出来了吗?你遇到了什么问题?

  想想办法,先和同桌交流。

  全班交流,互相讨论,发表看法,你的想法与依据。

  (学生发言老师板书)

  3:12=3/12=1/4=1:4

  4:16=4/16=1/4=1:4

  两个比的比值都是1/4,也就是说,两个杯子中的蜂蜜与水的比其实都是1:4,比较的结果是两杯水一样甜。

  5. 理解化简比,揭示课题。

  观察、比较:

  原来的比与后来得出的比有什么联系与区别?

  根据学生发言,师板书:最简整数比

  你能列举几个“最简整数比”吗?

  通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。

  指化简过程,揭示课题:比的化简

  你是怎么理解化简比的?

  (随学生回答在化简比的过程上板书“化简”)

  刚才化简比时,用到了以前学的什么知识?

  小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。

  二、新授

  1.尝试把下面的比化成最简整数比

  (1)24 : 42

  指名学生板演,然后让学生说说化简的过程。

  (你是怎么想的?怎样把这个整数比化简成最简整数比?)(2) 0.7 : 0.8

  (3)2/5 : 1/4

  这两个比与前一个比的最大区别是什么?

  小组讨论:如何把这两个比化简?能不能把小数比化简成最简整数比?如何化?能不能把分数比化简成最简整数比?如何化?并试一试。

  全班展示、交流:让我们一起来分享同学的智慧吧。

  (充分展示学生的不同方法。)

  2.归纳:小结化简比的方法

  小组先讨论一下再在全班交流。

  (1)化简整数比的方法是什么?

  (先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变规律进行化简)

  (2)如何把小数比化简成最简整数比?

  (先化成整数比,再化简成最简整数比)

  (3)怎样把分数比化成最简整数比?

  (先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

  3、化简比和求比值的区别

  学生根据上面第(3)题说说化简比和求比值的联系与区别。

  教师小结:看来,化简比的方法不是唯一的,不过都有一个共同目标,最后化简成最简整数比。化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,这也是化简比与求比值的最大区别,实际上,化简比与求比值仅一步之遥而已。

  三、尝试练习

  1、练习:做教材第73页书练一练的第1、2题。

  (独立完成,集体讲评)

  2、各把下面的比化成最简整数比:

  12 : 3 0.5 : 1/2 0.25 : 1

  3、他们的说法对吗?

  ⑴ 0.48∶0.6化简后是0.8。( )

  ⑵ 3/4:1/2化简后是 1 。( )

  ⑶ 0.4∶1化简后是2/5 。( )

  四、拓展练习

  一项工程,甲单独做20天完成,乙单独做30天完成。

  ⑴ 写出甲、乙两队完成这项工程所用的时间比,并化简。

  ⑵ 写出甲、乙两队工作效率比,并化简。

  五、本课总结

  回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

  小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要

  六、布置作业

  做教材第73页书练一练的第3、4题。

  《比的化简》数学教案设计 3

  教学目标:

  1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?

  (2)这两个相关联的量成正比例关系吗?为什么?

  2.猜想

  师:今天我们要学习一种新的比例关系反比例关系。(板书:反比例)

  师:从字面上看反比例与正比例会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的`规律,从概念的名称正、反两宇为切入点,引导学生顾名思义,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1.探究反比例的`意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2.小组讨论、交流。(教师巡回查看,并做适当指导。)

  3.汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过瘦过小,思路过于狭窄,虽然学生易懂,但容易造成知其然,而不知其所以然。通过增加表3,更利于学生发现长宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(和一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4.做一做(略)

  5.学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1.基本练习。(略)

  2.拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的正方形的边长边长=面积(一定),边长和边长成反比例的例子引起了学生们的争论,教师没有马上做判断,而是问学生:能说出你的理由吗?有的学生说:因为乘积一定,所以边长和边长成反比例关系。对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:不对!边长不随着边长的扩大而缩小!这是一种量!一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:边长4=正方形的周长(一定),边长和4成反比例。话音刚落,学生们就齐喊起来:不对!边长和4不是相关联的两个量。

  反思:通过你能举一个反比例的例子吗?这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3.综合练习

  四、总结

  反思:

  《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

  《比的化简》数学教案设计 4

  教学内容:

  比例的意义

  教学目标:

  使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

  教学重点:

  比例的意义。

  教学难点:

  找出相等的比组成比例。

  教学过程:

  一、旧知铺垫

  1、什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

  300:5=60:1

  (2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

  1.2:1.4=12:14=6:7

  2.求下面各比的比值。

  12:16:4.5:2.710:6

  二、探索新知

  1.教学例1。

  (1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

  ①说一说各幅图的情景。

  ②图中有什么相同之处?

  (2)你知道这些国旗的长和宽是多少吗?

  ①出现各图中国旗的长、宽数据。

  ②测量教室里国旗的长、宽各是多少厘米。

  (3)(指教室里的国旗)这面国旗的长和宽的`比值是多少?

  学生回答教师板书:

  60:40=

  (3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

  ①学生回答长、宽比值。

  2.4:1.6=

  ②两面国旗的长和宽的比值相等。

  板书:2.4:1.6=60:40

  也可以写成=

  (5)什么是比例?

  在这一基础上,教师可以明确告诉学生比例的意义,并板书:

  表示两个比相等的式子叫做比例。

  (6)找比例。

  师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

  过程要求:

  ①学生猜想另外两面国旗长、宽的比值。

  ②求出国旗长、宽的比值,并组成比例。

  ③汇报。

  如:5:=15:10=

  5:=15:105:=2.4:1.6

  2.做一做。

  完成课文“做一做”。

  第1题。

  (1)什么样的比可以组成比例?

  (2)把组成的比例写出来。

  (3)说一说你是怎么找的。

  (4)同学之间互相交流,检验各自所写的比例。

  第2题。

  (1)学生独立写比例,看谁写得多。

  (2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

  3.课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  三、巩固练习

  完成课文练习六第1~3题。

  四作业

  课后记:

  《比的化简》数学教案设计 5

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?]

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4:和5:2:和:0.2:和1:4

  3.用下面两个圆的有关数据可以组成多少个比例?

  如(1)半径与直径的比:=

  (2)半径的比等于直径的`比:=

  (3)半径的比等于周长的比:=

  (4)周长与直径的比:=

  二探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6=60:40

  内项

  外项

  (2)学生认一认,说一说比例中的外项和内项。

  如::=:

  外内内外

  项项项项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1)学生独立探索其中的规律。

  (2)与同学交流你的发现。

  (3)汇报你的发现,全班交流。

  板书:两个外项的积是2.4×40=96

  两个内项的积是1.6×60=96

  外项的积等于内项的积。

  (4)举例说明,检验发现。

  如::0.5=1.2:

  两个外项的积是×=0.6

  两个内项的积是0.5×1.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:=

  2.4×40=1.6×60

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5)归纳。

  《比的化简》数学教案设计 6

  教学内容:

  比例的意义(教材第40页的内容)

  教学目标:

  1、理解和掌握比例的意义。

  2、了解比和比例的区别与联系。

  2、能用比例的意义判断两个比能否组成比例。

  教学重难点:

  1、认识比例,理解比例的意义。

  2、在已有知识的基础上,结合实例引出新的知识。

  教具准备:

  情景图、多媒体课件、习题卡。

  教学过程:

  一、导入

  出示课题:比例

  看到课题你想到了以前学过的什么知识?(生1,生2等回答)

  我们已经了解了比的这些知识,请做下面练习。

  求下面各比的比值。

  18:453:52.7:4.5

  求完比值你觉得哪些比有联系?

  【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

  “例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

  师:相机板书:3:5=2.7=4.5?

  今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

  板书完整课题:比例的意义

  二、揭题示标。

  预设:生:1、比例的意义是什么?

  生:2、比例的意义有什么作用?

  (师趁机板书在黑板右上角)

  【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

  本节课我们就来完成这两个目标:

  三、自主探索

  出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

  【设计意图:对学生同时进行思想品德教育和爱国教育】

  生各抒己见。

  你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

  自学指导:

  1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

  2、发现了什么有趣的现象?

  3、把你的发现尝试用算式写下来。

  (5分钟后,期待你精彩的分享)

  【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

  (二)自学

  学生认真看书自学,教师巡视,督促人人都在认真地思考。

  (三)汇报分享

  谁愿意把你的结果和大家分享?师相机板书

  (1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

  原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

  我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

  【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

  师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

  生:…

  师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

  出示“比例的意义”概念

  擦去开始板书中的“?”并把比例可用分数形式表示板书出来

  【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

  师:你能说一说组成比例要具备哪些条件吗?

  生:…

  师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

  生:…

  【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

  四、当堂检测(牛刀小试)

  下面各比能组成比例吗?你是怎样判断的`?请写出计算过程。

  (1)3:7和9:21

  (2)15∶3和60∶12

  五、当堂训练:

  1、把下面的式子进行归类:

  (5)72:8=3X3(6)3.6:6=0.6

  比:()

  比例:()

  思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

  2、判断:

  (1)、有两个比组成的式子叫做比例。()

  (2)、如果两个比可以组成比例,那么这两个比的比值一定相等。()

  (3)、比值相等的两个比可以组成比例。()

  (4)、0.1∶0.3与2∶6能组成比例。()

  (5)、组成比例的'两个比一定是最简的整数比.()

  六、拓展提升(思绪飞扬)

  1、写出比值是7的两个比,并组成比例。

  2、12的因数有(),从12的因数中挑选4个数组成比例是()。

  3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

  设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

  七、全课总结

  今天这节课你有什么收获?

  八、课堂作业

  第43页第2、3题。

  九、抽查清。(每组4号同学完成)

  判断下面每组中的两个比能不能组成比例。

  30:5和48:812:0.4和3:5

  十、板书设计

  比例的意义

  表示两个比相等的式子叫做比例。

  比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  教学反思:

  本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

  1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

  2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

  3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

  4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

  5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

  《比的化简》数学教案设计 7

  教学目标:

  通过具体问题认识成正比例、反比例的量。

  能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。

  能找出生活中成比例和成反比例量的实例,并进行交流。

  教学重点和难点:

  理解两个变量之间的函数关系

  教学准备

  小黑板投影片

  教学过程:

  本节课主要是对回顾与交流部分知识进行复习。

  一、生活中有哪些成正比例的量?有哪些成反比例的量?小组同学互相举例说一说。

  ①可以让学生课前进行复习,并收集相关信息,课上展示。

  ②以小组形式展开交流、反思,然后组织汇报。

  ③展示部分学生的优秀作品。

  二、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)可以列表。

  (2)可以画图。

  (3)可以用式子表示。

  教材创设了路程和时间之间的关系,并运用表格、图、关系式、自然语言等方式来描述这一关系,使学生体会刻画数量之间的关系的`多种形式,并促使学生在几种方式之间进行转化。教学时,教师可以再举出一些实际问题或鼓励学生提供出实际问题,让学生再次经历多种方式表示的过程;教师应通过语言、板书等形式将几种方式进行对应。

  三、举出生活中数学中一量虽另一量变化的例子。将学生的视野由正比例、反比例拓展到两个量之间的关系,这也体现了教材的特点,学生只要举出例子就行了,教师可以让学生说清楚谁随谁变化,对于感兴趣的学生,教师可以鼓励学生通过表格、兔等大致的刻画变量之间的关系。

  《比的化简》数学教案设计 8

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点:理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天第二天

  运输次数2 4

  运输量(吨)16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少?(16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的.外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

  《比的化简》数学教案设计 9

  教学目标:

  1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

  2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

  3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

  教学重点:

  理解比例的意义,探究比例的基本性质。

  教学难点:

  探究比例的基本性质和应用意义,会判断两个比能否组成比例。

  教学过程:

  一、创设情境,引入新课

  同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?

  1、出示三幅场景图(见教材第40页主题图)

  2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)

  3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。

  4、汇报,教师依次出示

  二、引导探究,明确意义

  (一)比例的意义

  (1)观察这三组数据,你有什么发现?

  (2)看三组数据,能否从中选出两个比组成等式呢?

  (3)学生汇报,教师任选其中的`板书

  (4)师:肯定学生的'回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。

  (5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?

  (6)试写比例的分数形式。

  2、根据意义,判断比例

  下面哪组中的两个比可以组成比例?把组成的比例写出来。

  (1)学生独立完成。

  (2)指名汇报。

  (3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?

  小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。

  (二)比例的基本性质

  师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。

  (1)写出一组比例,让学生指出各部分的名称。

  (2)如果把比例写成分数的形式,你能找出它的内项和外项吗?

  生独立指出比例的内项和外项。

  1、活动探究总结性质

  谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?

  (1)请你试着写出一些比例:

  (2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)

  (3)学生探究,教师巡视,收集资源。

  (4)探究:你发现了什么?怎么发现的?

  (5)验证:有了这样的发现之后,你有什么问题呢?

  (6)可以得出什么?(比例的性质)

  (7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?

  2、运用性质

  (1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?

  (2)出示一些练习,判断哪一组中的两个比可以组成比例?

  三、归纳总结,交流收获

  本节课学习了什么?

  《比的化简》数学教案设计 10

  教学目标:

  知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

  情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义和基本性质.

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学理念:

  充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

  教学准备:

  课件

  教学过程:

  一、激趣导入

  1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

  2、请同学们看大屏幕,课件出示P32页四幅图。

  二、探究新知

  1、比例的意义

  师问:

  ①这四幅图中有什么共同的事物?(齐说)

  ②这四面国旗出现在什么场合或什么地点?(指生回答)

  ③这四面国旗的长与宽分别是多少?(指生回答)

  ④这四面国旗的大小相同吗?

  说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

  ⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

  ⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

  师问:

  ①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

  那么我们能用什么符号可以把它们连接成等式?生:等号

  谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

  ②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

  ③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

  师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

  师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

  师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

  问题:

  ①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

  ②判断两个比能不能组成比例,关键要看什么?

  ③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

  我们已经了解了比例的意义,下面我来考一考大家:

  课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

  2、比例各部分名称

  师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

  学生回答上面的问题,教师课件演示。

  做一做:指出下面比例的内项和外项(课件出示)

  4、5∶2、7=10∶6240/160=144/96

  3、比例的基本性质(课件出示)

  观察:2、4∶1、6=60∶40

  思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

  用下面的比例验证你的发现:

  6∶10=9∶158∶2=20∶5

  你能用一句话把发现的规律说出来吗?(找3名同学回答)

  下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

  师:看大屏幕(课件出示)2、4/1、6=60/40

  问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

  指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

  演示2、4/1、6=60/40→2、4X40=1、6X60

  4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

  课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

  讲解时可启发:如果这两个比能组成比例,哪两个数是內项,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

  因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

  5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

  6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

  生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

  三、巩固新知(课件出示)

  做一做,相信你能行!

  1、判断

  ①10∶5=2是比例。()

  ②在比例里,两个外项的.积与两个內项的积的差是O、()

  2、填空

  ①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

  ②2:9=8:()

  3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

  四、通过这节课的学习,说说你有什么收获或学到了那些知识?

  五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

  板书设计比例的意义和基本性质

  2、4:1、6=3/260:40=3/2

  2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

  2、4:1、6=5:10/32、4;1、6=15:10

  5:10/3=15:105:10/3=60:40

  60:40=15:10

  2、4X40=96在比例里,两个外项的积等于两

  1、6X60=96个内项的积。这叫做比例的基本性质。

  《比例的意义和基本性质》教学反思

  本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

  教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

  在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

  习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

  通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

  我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

  本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

  《比的化简》数学教案设计 11

  教学目标

  1、知识与技能

  (1)学生能正确运用比和比例的意义、性质,会解比例;

  (2)学生能独立找出比和分数、除法的联系与区别;能正确迅速地化简比和求比值。

  (3)学生能根据正反比例的意义进行判断实际生活中的相关联的两个量。

  2、过程与方法

  采用小组探索合作的形式;体验归纳总结的学习方法。

  3、情感态度与价值观

  让学生体验成就感,激发学生的学习兴趣,培养学生的合作、探究意识,像一个科学家一样去探索世界,归纳总结问题。

  教学重点

  学生对比和比例的知识进行归纳总结。

  教学难点

  学生运用正反比例于实际中。

  教学过程

  一、导入

  请同学们阅读P84页,明确本课将要复习哪些内容?并列出来。在小组内交流自己的成果,形成本小组内最优的一份成果。

  1、比和比例的意义,各部分名称和基本性质;

  2、比例的基本性质,分数的基本性质,商不变的规律之间的联系;

  3、比和分数、除法有的联系;

  4、正反比例的实际运用; 培养学生的整体观念。

  二、先在下表中写出比和比例的一些知识,再举例说明。

  学生先自己填写,然后小组内对比讨论,并发现别的同学和自己的不同之处,讨论优缺点。

  三、求比值和化简比

  小组内回顾讨论化简比和就求比值

  1、一般方法

  2、结果

  3、举例说明:求比值和化简比有什么联系与区别? 完成练习十七的`习题1,并讨论说出每小题的考察目的。

  四、比和分数、除法有什么联系?先填下表,再说一说它们的区别。

  展示学生的表格,评议,并举例说明。

  五、比的基本性质、分数的基本性质、商不变的基本规律有什么联系? 先列出来,并在小组内讨论。

  六、正比例和反比例什么样的两种量才能成比例?

  两种相关联的量是不是都成比例?能举例说明吗?你会比较这两种关系吗?正反比例的知识要点:

  两种相关联的量,若比值一定,则成正比例;若积一定,则成反比例;若比值和积都不一定,则不成比例。

  完成练习十七第2题。

  七、独立运用

  应用比例知识解答应用题,要先判断两种相关的量成什么比例,找出这两种相关的量的对应数值,再根据正反比例的意义列方程解答。

  完成练习十七的习题3、4、5、6、7。 自主检评,完善提高

  八、总结

  同学们,上了这节课你们有什么收获和感受?你学到了什么知识与技能?你用到了哪些方法?你体验到成就感了吗?

  《比的化简》数学教案设计 12

  教学要求:

  使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

  进一步提高解决简单实际问题的能力。

  教学过程:

  提出本课复习题

  基本概念的复习

  什么叫两种相关联的量?

  下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

  什么样的两种量成正比例关系?什么样的两种量成反比例关系?

  成正比例关系的量与成反比例关系的'量有什么异同点?

  应用练习

  完成教材97页的“做一做”。

  第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

  巩固练习

  完成教材99页第6~7题。

  全课总结(略)

  教学目标:

  使学生进上步理解和掌握比和比例的意义与性质。

  区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

  教学过程:

  讲述本课复习课题并板书

  基本概念的复习

  比和比例的意义与性质。

  什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

  比和分数、除法有什么联系?

  说说比的基本性质的比例的基本性质?

  比的基本性质与比例的基本性质各有什么用处?

  看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

  完成教材95的“做一做”。

  结合第3题让学生说说什么叫做解比例?根据是什么?

  示比值和化简比。

  独立完成教材96页上的题目。

  说说求比值与化简比的区别?

  (求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

  看书中的表,总结方法。

  完成教材96页的“做一做”

  比例尺

  问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

  2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

  比例尺除写成数字化形式处,还可怎样表示?

  完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

  练习巩固

  完成教材十九页第1~4题。

  《比的化简》数学教案设计 13

  【教学目标】

  1、理解比例的意义,认识比例各部分的名称。

  2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。

  3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  【教学重点】

  理解比例的意义和基本性质。

  【教学难点】

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  【教学准备】

  课件,扑克牌10张(2~10以及A),圆规一个。

  【教学过程】

  一、复习准备

  (1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  121634184、52、7106

  教师:同学们发现4、52、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1、提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质

  2、探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长(米)26……

  影子长(米)39……

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:32=96,62=93……

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:29和36能组成比例吗?你是怎么知道的?

  指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断

  25和80200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3、认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出32=96和62=93的'内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4、教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5、运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?

  学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

  《比的化简》数学教案设计 14

  教学目标:

  1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

  教学重点:

  理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点

  自主探究比例的基本性质。

  教学过程

  一、导入

  1、谈话

  师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

  生1:比的意义。

  生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  生3:比的前项除以后项,所得的商就是比值。

  (评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

  二、合作探究,学习新知

  1、比例的意义

  师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

  生:比例?(书:课题比例)

  师:看到这个课题你想知道什么?

  (预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)

  生:什么叫比例呢?

  生:(书)表示两个比相等的式子叫做比例。

  师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

  师:你也能举出一个这样的`例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?

  (老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

  师:通过以上练习,你认为这句话中哪些词最重要?为什么?

  生1:两个比,不是一个比

  生2:相等,这个比必须相等

  生3:式子,不是两个等式是式子。

  师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

  (1)0、8:0、3和40:15

  (2)2/5:1/5和0、8:0、4

  (3)8:2和15/2:15

  (4)3/18和4/24

  (学生独立判断,师巡视指导,然后汇报)

  师:先说能否组成比例,再说明理由,生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的.比值都是8/3,所以0、8:0、3和40:15能组成比例。

  同理教学:(2)2/5:1/5和0、8:0、4

  (3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

  师:怎样改能使它组成比例呢?

  生:4:8=15/2:15或8:2=15:15/4

  同理教学(4)3/18和4/24

  师:像3/18和4/24是比例吗?

  师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

  2、认识比例各部分的名称。

  师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

  生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

  师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

  生:2和32是它的内项,16和4是它的外项。

  师:请同学们快速抢答老师指的数是比例的外向还是内项。

  生:(激烈抢答):外项

  师:同学们反应真快,分数的形式中哪些是比例的项呢?

  生:2和32是内项,16和4是外项。

  师:老师指分数比例学生抢答。

  3、探索比例的基本性质。

  师:同学们学得真不错,敢不敢和老师来个比赛?

  生:(兴趣高涨):敢!

  师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

  师:谁来。

  生1:4:5,生2:8:9不能组成比例。

  生:对。

  师:服气吗?不服气咱们再来一次,生1:1、2:1、8,生2:3:5

  师:不能。对吗?

  生:对。

  师:老师又赢了,这回服气了吧。(学生点头)

  师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

  生:想。

  师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

  1、可以通过观察、算一算的方法进行研究。

  2、你能得出什么结论?)

  师:现在请将你的发现在小组里交流一下,看看大家是否同意。

  (学生讨论)

  师:哪个小组愿意将你们的发现与大家分享?

  生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

  师:有道理,不错,还有其他发现吗?

  生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

  师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

  师:这是两个外项的积,(师板书:两个外项的积)

  (学生板书:16×4=64)

  师:这是两个内项的积,(师板书:两个内项的积)

  师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

  师:其他组的同学同意他们这个结论吗?

  生:同意。

  (以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

  师:真的所有的比例都是这样吗?怎么验证?

  生:可以多举几个例子看看。

  师:这是个好建议,那快点行动吧。(学生独立验证)

  生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

  生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、

  师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

  4、比和比例的区别

  师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

  师:哪一组的代表来说一说。

  生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

  生:比和比例形式不同。比是一个比,比例是两个比。

  生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

  5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

  三、巩固练习

  1、下面每组比能组成比例吗?

  (1)6:3和8:5(2)20:5和1:4

  (3)3/4:1/8和18:3(4)18:12和30:20

  生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

  生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

  师:怎样改一下使它们能组成比例?

  生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

  生4:还可以把1:4改成4:1,也能组成比例。

  生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

  生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

  师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

  2、填一填。

  2:1=4:()1、4:2=():3

  3/5:1/2=6:()5:()=():6

  师:最后一题还有没有别的填法?

  生1:5:(1)=(30):6

  生2:5:(30)=(1):6

  生3:5:(2)=(15):6

  生4:5:(15)=(2):6

  师:怎么会有这么多种不同的填法?

  生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

  3、用2、8、5、20四个数组成比例。

  师:你能用这四个数组成比例吗?

  师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

  生:2和20做外项,8和5做内项时有4种:

  2:8=5:202:5=8:20

  20:8=5:220:5=8:2

  8和5做外项,2和20做内项时也有4种:

  8:2=20:58:20=2:5

  5:2=20:85:20=2:8

  四、课堂总结

  师:说一说,这节课你有哪些收获?

  生1:知道了比例的意义。

  生2:学习了比例的基本性质

  生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

  师:这节课哪个地方给你留下的印象最深刻?

【《比的化简》数学教案设计】相关文章:

金牌教案设计:比的化简04-25

比的化简反思05-13

《比的化简》教学反思04-10

比的化简教学反思04-08

比的化简教学反思04-28

初中数学教案设计09-29

数学《认识钟表》教案设计04-01

小学数学教案设计04-22

小学数学教案设计02-06

人类起源与进化简说05-02