五年级数学教案《图形的面积》

时间:2024-04-08 11:50:32 其它教案 我要投稿
  • 相关推荐

五年级数学教案《图形的面积》

  在教学工作者开展教学活动前,时常要开展教案准备工作,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编精心整理的五年级数学教案《图形的面积》,欢迎大家分享。

五年级数学教案《图形的面积》

五年级数学教案《图形的面积》1

  教学目标:

  1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。

  2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

  教学过程:

  一、教学例10。

  1、出示圆环图形,这是什么图形?你知道吗?

  2、出示例10题目,读题。

  师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  小组讨论,确立解题思路。

  交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积

  3、学生独立操作计算。

  4、组织交流解题方法,提问:有更简便的计算方法吗?

  小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。

  二、“试一试”

  1、出示题目和图形,学生读题。

  师:(1)这个组合图形是有哪些基本图形组合而成的`?

  (2)半圆和正方形有什么相关联的地方?确:正方形的边长就是半圆的直径。

  (3)思考一下,半圆的面积该怎样计算?

  2、学生独立计算。

  3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。

  小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。

  三、巩固练习。

  1、“练一练”。

  思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?

  (2)计算这些基本图形的面积分别需要哪些条件?

  (3)第一个图形,两个基本图形有什么联系?第二个图形呢?

  明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

  学生独立完成,并全班反馈交流。

  2、练习十九第6~9题。

  (1)第6题。先学生独立完成,再交流。

  交流重点:

  a、每个组合图形需要测量图中哪些线段的长度?

  b、求每个图色部分面积时,方法是怎样的?

  c、计算中有没有注意运用简便的方法。

  (2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。

  (3)第8题。学生读题,观察示意图。

  提:

  a、要求小路的面积实际求求什么?

  b、求圆环的面积,必须知道什么条件?

  c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?

  学生独立解答,并全班交流。

  (4)第9题。

  通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。

  (5)思考题。学生先充分思考,再组织交流。

  四、读一读“你知道吗?”,并算一算。

五年级数学教案《图形的面积》2

  教学内容:

  课本第21页。

  教学目标:

  1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

  2、能运用所学知识解决生活中组合图形的实际问题。

  3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

  4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教学准备:

  课件

  教学过程:

  一、创设情境,激趣导入。

  1、同学们,我们已经学习了哪些多平面图形?

  导学要点:

  请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。

  板书:组合图形的面积

  二、小组合作探究

  1、出示前置性作业小组交流

  复习

  (1)说说你学过哪些平面图形?

  (2)说说这些图形的面积计算公式?

  2、自学21页的例10

  (1)导学单

  1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

  2)尝试计算每个图形的面积。

  3)思考:组合图形的面积是怎样计算出来的?

  导学要点:

  (1)分割法:将整体分成几个基本图形,求出它们的面积和。

  (2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  (2)小组交流

  1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

  2)由于方法不同,我们计算组合图形的方法有什么不同?

  3)求组合图形面积时关键是做什么?

  导学要点:

  (1)要根据原来图形的特点进行思考。

  (2)要便于利用已知条件计算简单图形的面积。

  (3)可以用不同的方法进行割补。

  (3)全班交流

  1)学生举例并解答(前置作业我的例子)

  2)结合学生自己举的例子解答讲解。

  三、应用新知,解决问题

  1、课本第21页练一练

  (1)生独立计算。

  (2)生展示思路。

  点拨:

  计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的`面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

  2、课本第23页练习四第1题前两题。

  点拨:

  (1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

  (2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

  3、课本第23页练习四第二题

  点拨:

  引导说说组合图形面积的计算方法。

  四、课堂总结

  通过这节课的学习,你学到了什么知识呢?

  教学反思:

五年级数学教案《图形的面积》3

  教学目标:

  【知识与技能】

  1.能通过观察,弄清图形的组合关系。

  2.能通过割、补的方法,求组合图形的面积。

  【过程与方法】

  1.让学生通过观察、比较,正确理解概念。

  2.培养学生运用数学的语言进行交流和说理。

  3.通过让学生亲历计算面积方法的获得过程,培养正确的思维方法。

  【情感、态度与价值观】

  1.引导学生积极参与探索、思考的过程。

  2.培养学生实事求是、独立思考、解决问题的习惯和能力。

  教学重点及难点:

  1.判断图形的组合关系。

  2.判断分割后图形的数据的选择。

  教学用具准备:

  多媒体课件

  教学过程设计:

  一、复习

  先量一量,再计算下列图形的面积,量出的长度都用“四舍五入”法凑整到厘米。

  【注意:由于测量上存在误差,要求先将量出的长度四舍五入到厘米再计算。】

  二、求组合图形的面积

  (一)求下面图形的面积(单位:分米)

  1.观察组合图形,尝试进行割、补,并求出面积(画出割、补的示意图)

  独立完成。

  2.交流割、补法,尝试根据别人的方法来列式求组合图形的面积。

  如:

  长方形的`面积+三角形的面积(35-14)×2 8+14×10÷2

  梯形的面积+三角形的面积(28-10+28)×(35-14)÷2+35×10÷2

  长方形的面积-梯形的面积35×28-(28-10+28)×14÷2

  3.哪些数据是隐蔽的?如何寻找?

  4.哪种割补法相对比较简单?

  5. 小结:根据图形的特征选择分割。

  (二)求下面图形的面积(单位:分米)

  1.仔细观察组合图形,思考:可以割补成哪些基本的组合图形?

  2.独立尝试,有几种不同的方法?画出示意图,然后计算。

  如:

  (1)大长方形的面积-梯形的面积

  (2)小长方形的面积+梯形的面积+梯形的面积

  3.先在组内交流,然后在全班汇报

  说说割补的方法,数据的选取。

  【这里的2道题是对新课的巩固,教师可以让学生自己试做,再进行交流、反馈。基础练习,运用所学知识进行模仿练习,让学生掌握解题的方法。】

  (三)小结:

  用割补法将组合图形分割成几个基本的几何图形,找到正确的数据,求组合的图形。

  三、练习

  求下列组合图形面积:

  1.观察组合图形,尝试进行割、补,并求出面积(画出割、补的示意图)

  2.独立完成。

  3.交流割、补法,尝试根据别人的方法来列式求组合图形的面积。

  4.哪些数据是隐蔽的?如何寻找?

  5.哪种割补法相对比较简单?

  6.小结:根据图形的特征选择分割。

  四、拓展与探究:

  求图形的面积(单位:cm)

  【拓展练习,主要是培养学生的思维能力和解决实际问题的能力。

五年级数学教案《图形的面积》4

  (1)这是一个组合图形 (图形的性质)

  (2)可以尝试将它进行分割,割补成几个我们已经研究过的几何图形,来求它的面积。 (解题的策略)

  (3)我们 已经研究过长方形、正方形、平行四边形、三角形、梯形的面积 。 (已有的知识)

  3.独立尝试:仔细观察,画出分割的示意图。

  (教师提示:怎样分割才能比较容易找到对应的数据?)

  4.反馈交流:

  可能:

  (1)长方形的面积+三角形的面积+三角形的面积 (割)

  (2)梯形的面积+梯形的面积 (割)

  (3)长方形的面积-三 角形的面积 (补)

  问:你怎么会想到分割成三角形?或梯形?

  【给予孩子充分的时间去操作、观察、讨论、发现、交流、归纳。】

  5.小结:同样一个组合图形,可以采用不同的割、补 法,分成几个基本的组合图形。

  【在组织交流时,要注意指导促使正确地选择数据,进行面积计算。由于图中的数据比较多,学生在选择数据时容易受到干扰。对于能 力弱的学生,教师可以指导他们在选择数据前先用手摸一摸长方形的长与宽,三角形的底和高,降低选择数据的难度。】

  (二)计算

  1.分割后每一部分图形的面积分别是多少?你能找到正确的数据进行计算吗?

  2.学生 尝试计算。(可任选一 种割补法)

  教师巡回指导,让学生明确数据的由来。

  3.交流:

  注 意:

  (1)为什么分割成的两个三角形的面积是一样大 的?

  (2)梯形的高是多少?(隐性条件)

  (3)小长方形的宽是多少?

  (4)书写格式的规范、面积单位的运用。

  【学生列式计算时,教师要注意指导学生的书写格式,特别要提醒学生正确地使用面积单位。】

  三、练习

  求下列图形的面积(单位:厘米)

  1.独立思考,寻找解题策略。

  (1)这是一个怎样的组合图形 ?(图形的'性质)

  (2)可以尝试将它进行分割,割补成几个我们已经研究过的几何图形,来求它的面积? (解题的策略)

  (3)同桌讨论,选择合理的割补方法。

  (4)根据割补好的图形寻找相应的数据进行计算。

  2.小组交流。

  【通过习惯的培养,让学生有条理的思 考问题,养成综合分析问题的能力。】

  3.小结:

  用割补法将组合图形分割成几个基本的几何图形,找到正确的数据,求组合的图形。

  四、总结

  通过这堂课的学习,你有什么收获?还有什么问题?

  提醒:

  新学期军训、分班卷、课本同步试题

五年级数学教案《图形的面积》5

  【教学目标】

  1、借助方格纸,能直接判断图形面积的大小。

  2、通过交流,知道比较图形面积大小的基本方法。

  3、体验图形形状的变化与面积大小变化的关系。

  【教学重点】

  掌握比较图形面积大小的方法。会用不同的方法去比较图形的面积大小

  【教具准备】

  课件、方格纸、直尺、各种平面图形的硬纸板、七巧板等

  【教学设计】

  教学过程

  教学过程说明

  一、 复习旧知,揭示新课。

  1、课件播放已经学过的各种平面图形(长方形、正方形、三角形、梯形等),让学生说出图形的名称以及特征。

  2、让学生拿出准备的长方形的硬纸板。跟同桌说说哪儿是它的周长,哪儿是它的面积。并且用手比划一下这个长方形的周长有多长?用手摸一摸它的面积有多大?

  (注:明确图形的周长是指绕图形一周的长度;图形的面积是指所占平面的大小。)

  3、师:任意拿出两个图形纸板,说说哪个面积大?哪个面积小?让学生进行直观判断。如果两个形状不同,大小很难区分时,你有什么办法?--揭示课题:我们今天来探讨图形面积的比较。

  二、自主探究:比较图形面积的大小。

  1、出示课本16页网格中的13个图形。

  2、自主探究活动:这些图形的面积之间有什么关系呢?请同学们先仔细观观察、比较,看谁的发现最多多!

  3、小组交流:在小组里交流你的发现。

  ①全班交流,归纳比较图形面积的方法:各组派代表说说你们组找到了哪些图形之间的面积大小关系?是怎么知道的?依据同学的回答,归纳学生所使用的比较方法如下:

  ②板书:

  A、数方格的方法;(重点说明这个方法,为今后学习面积公式的推导作好铺垫。)

  B、重叠法;(通过旋转、平移、翻转等操作方法,使两个图形重叠,再观察比较出图形面积的大小)

  C、转化法;(通过割补、拼合转化为规则的图形后,再做比较)

  三、实践活动:比较图形面积的大小。

  1、活动一:课件出示课本17页1题:

  师:同学们观察得很仔细,总结了这么多的比较图形面积大小的方法,那我要考考大家的眼力,下列图形中哪些与图1的面积一样?为什么?你用的是什么方法得到的?

  (注:重点要引导学生怎样对图形进行平移和分割,让学生体会形状变化而面积不变的事实,培养学生图形的转化思想,为后续运用转化思想学习面积公式的推导打下基础。)

  2、活动二:出示课本17页的2题。

  (1)师:我们知道图形形状可能不一样,但是面积大小可能一样的道理,那大家能画出相同面积但形状不一样的图形吗?

  (2)按题目要求在课本上画面积是12平方厘米的不同图形。看谁画得多。

  ⑶作业展示。表扬有创意的同学。

  (注:重点要引导学生说出为什么面积是12平方厘米,培养学生在面积不变的`情况下,形状可以是不同的辨证思想)

  3、活动三:出示课本17页的3题:

  (1)师:我们知道,把一个不规则的图形给它补上一块,就可以使它变成规则的图形,上面的这个图形应该补几号图形呢?为什么?

  (2)课件演示。

  (注:重点让学生说出自己的想法,培养学生把不规则图形可以补成规则图形的意识,为今后运用“补”的方法去求不规则图形的面积做好铺垫。)

  4、活动四:出示课本17页的4题:

  (1)师:我们知道用不同的图形可以拼出不同的有意思的图形来。那4题的两个图形可以拼成什么样的图形呢?先想想,再动手拼一拼进行验证。

  (2)你还能拼成什么样的图形呢?动手试一试。

  ⑶作业展示,说自己拼成的什么图形?怎么想的?

  (注:要先让学生想象可以拼成什么样的图形?再让学生动手操作,为运用分割法求组合图形面积埋下伏笔。)

  5、活动五:拼平行四边形

  ⑴让学生拿出七巧板,拼平行四边形,再在小组内进行交流。

  ⑵各小组派代表在全班进行交流。

  (注:要让学生动手操作,在同学间进行交流,大胆说出自己的想法,培养学生动手和观察能力,为后续学习平行四边形的面积打好基础

  四、全课总结。通过这节课的学习,有什么收获和启示?

  通过对已经学习过的平面图形的再认识,以及图形周长和面积的再认识,为学习新知识做好了铺垫。在学生很难比较两个近似图形面积大小的时候,引入课题,为学生下一步的探究创设了情境,提高了学生探究的欲望。

  教师在组织学生通过自主探究、交流等形式进行比较活动中,使学生掌握多种比较面积大小的方法。同时也让学生知道确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定的。也为学生自主探索基本图形的面积计算的方法打下了基础。在教学中真正体现了学生在学习中的主体地位,有利于培养学生学习的积极性和研究问题的方法,使学生在课堂上真正得到提升。学生在掌握知识的同时,能力也得到了培养。

  教师通过组织学生画一画、试一试、拼一拼、想一想等活动,运用平移、旋转、割补等方法,使学生体会形状变化而面积不变的事实,体会把组合图形分解为基本图形的过程,培养图形切拼的意识和图形的转化思想,为后续运用转化思想学习面积公式的推导打下基础。

  归纳知识要点和心得体会,突出学习重点,形成完整的知识框架。

  【教学反思】

  本节课是学习图形面积的准备课,学好这节课为今后学习图形面积的计算做好铺垫。总体来讲,有以下方面做得好的:

  一、 注重让学生自主探究。

  我在设计本节课的教学过程中力求把课堂还给学生,让学生自主探究,亲身经历数学学习的过程。在学生比较图形面积的时候,我设计的是多个探究活动,让学生在小组活动中,去体验。在活动结束后,小组成员之间,以及全班同学之间进行广泛的交流,很好的培养了学生动手操作的能力,语言的表达能力,和别人合作的能力,观察能力,总结概括能力等。使不同的学生有不同的提升。突出了以学生为主体,老师为引导的教学方法,同时更培养了学生的学习主动性和兴趣。

  二、注重学生解决问题方法和数学思想的培养。

  本节课设计的实践活动环节,突出了让学生自主探究活动,有意识的培养学生在交流中学会解决问题的方法。注重理论联系实际,在操作中体验,在操作中提升。深刻体会数学中的一些思想。如转化思想(割补法、旋转、平移等)、辨证思想等。使学生在学习的过程中感受到学习数学的重要性和必要性。

  不足之处:由于活动多,学生准备的学具不是很充分,个别学生没有达到预想的效果,没有得到应有的提升,在今后的教学中加强对这些同学的关注。

五年级数学教案《图形的面积》6

  教学内容:

  教材P99例4及练习二十二第1~6题。

  教学目标:

  知识与技能:

  结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

  过程与方法:

  根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

  情感、态度与价值观:

  能运用组合图形的知识,解决生活中组合图形的实际问题。

  教学重点:

  理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

  教学难点:

  根据组合图形的条件,有效地选择汁算组合图形面积的方法。

  教学方法:

  动手实践、自主探索、合作交流。

  教学准备:

  师:多媒体、各种平面图形。

  生:七巧板、简单图形学具、少先队中队旗实物。

  教学过程

  课前预习案

  1、判断

  (1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )

  (2)梯形的面积比平行四边形的面积小。 ( )

  (3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )

  一、谈话导入

  师:我们一起来复习前面学过的图形的面积公式:

  正方形的面积=边长×边长

  长方形的面积=长×宽

  平行四边形的'面积=底×高

  三角形的面积=底×高÷2

  梯形的面积=(上底+下底)×高÷2

  二、自主探究:

  1.探究活动一:组合图形的分解:

  (1)观察课本99页的四幅主题图,说说它们分别是由哪些简单图形组成的?

  (2)一个组合图形我们可以把它分割成已学过的几个图形,试着把下面的图形分一分。

  (3)同一个图形,我们从不同的角度认识,也可以分成几个不同的基本图形。分一分,看看我们的队旗可以分成哪些不同的基本图形?

  (4)找一找生活中的组合图形。

  2.探究活动二:计算组合图形的面积。

  (1)出示例题,讨论交流:怎样计算这面墙的面积?

  (2)一个组合图形我们可以分成已经会计算面积的几个简单图形,分别计算出它们的面积,再求和。

  (3)尝试解答:

  方法一:这面墙的形状可以分成一个( )和一个( )。

  把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。

  教师可将学生的分法用多媒体展示:

  并根据学生回答板书:

  5×5+5×2÷2

  =25+5

  =30( m2)

  方法二:这面墙的形状可以分成两个相同的( )形。

  把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。

  教师可将学生的分法用多媒体展示:

  并根据学生回答板书:

  (5+5+2)×(5÷2)÷2×2

  =12×2.5÷2×2

  =30(m2)

  教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

  三、课堂达标

  1.判断。

  (1)任何一个平行四边形都可以分割成两个完全一样的梯形。( )

  (2)等底等高的两个三角形可以拼成一个平行四边形。 ( )

  2.一个三角形的面积是22.5平方分米,与它等底等高的平行四边形的面积是多少平方米?

  3.练习十八的第1题,先让学生对组合图形分一分,说一说是如何分割的,再计算。

  学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。

  4.练习十八的第2题

  本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。

  学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。

  (1)由中队旗引入 (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2 S总=S长-S

  5.练习二十二的第3题。

  先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

  6.练习十八的第4、5题,生独立完成。

  四、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:

  1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。

  3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

  作业布置:

  板书设计:

  组合图形的面积

  由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) =30 (m2)

五年级数学教案《图形的面积》7

  1. 教学目标

  1、运用适当的分割拼补的方法明 确图形的组合关系。

  2、利用已经学过的基本图形面积计算公式正确计算出组合图形的面积。

  2. 教学重点/难点

  教学重点:

  将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。

  教学难点:

  合理 利用图形中标出的'长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。

  3. 教学用具

  教学课件

  4. 标签

  教学过程

  一、 复习引入

  1、 我们已学过哪些平面图形?

  2、 说出它们的面积计算公式 ?

  3、 谁能用上面两个或三个拼成一个图形?

  4、 揭题:组合图形的面 积

  二、 探究新知

  1、 出示:下面是一个组合图形,你会求它的面积吗?

  1、 小组讨论

  2、 小组汇报,集体交流

  三、 巩固练习

  1、求组合图形的面积

  课堂小结

  总结

  这节课你有什么收获?

  课后习题

  作业设计

五年级数学教案《图形的面积》8

  教学目标:

  1,认识组合图形,会把组合图形分解成已经学过的平面图形。

  2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。

  3,培养学生的观察能力和动手操作能力。

  教学重点:探索并掌握组合图形的面积计算方法。

  教学难点:理解并掌握组合图形的面积计算方法。

  一,复习引入

  1,师:大家知道哪些简单的平面图形?

  生:长方形,正方形,平行四边形,三角形-------

  师:今天老师是也带来了一些简单的平面图形,请看.

  (课间出示长,正,平,三,梯)

  师:大家知道他们的面积计算公式马吗?

  生说公式,同时师课间出示.

  师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!

  (课间出示;风筝房屋的侧面七巧板中队旗)

  师:你能看到那些简单的平面图形?同桌之间说说看。

  汇报:重点说中队旗分成两个梯形。

  引出“组合图形”的定义,课件出示定义。

  板书:组合图形

  2,寻找身边的组合图形

  师:其实我们身边还有很多这样的组合图形,大家找找看。

  (教师窗户,防盗窗)

  师:今天我们就来学习怎么计算组合图形的面积?

  板书:的面积

  二,探究新知

  教学例4:房屋侧面

  1,先出示没有数字的图形

  师:可以直接利用我们学过的面积公式来计算吗?

  生:不能

  师:那可以怎样计算呢?同桌之间说说看?

  汇报:可以分成两个梯形,可以分成一个三角形和一个长方形

  师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。

  学生做,师巡视指导,搜集作品。,

  2,投影展示学生作品:

  方法一:转化成三角形+长方形

  让学生说一说他的`做法,重点问转化成了什么图形?

  问:大家看懂了吗?每一步表示什么意思呢?

  掌声送回学生一

  方法二:转化成两个相同的梯形

  (多让其他学生说一说分发)

  3,比较两种方法

  课件同时出示两种做法

  师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?

  生:都是把组合图形分成成了已经学过的简单的平面图形。

  师:像这种分发在数学上叫分割法。板书:分割法

  分割

  板书:组合图形简单的平面图形

  求和

  小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。

  师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。

  三:练习

  1,“做一做”

  让学生独立完成,找一学生上黑板板演,找另一学生评价。

  在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)

  教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。

  2,中队旗

  先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。

  先讲两种分割法,重点讲解“填补法”

  师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?

  生:长方形的面积-三角形的面积=组合图形的面积

  师:这位同学的想法真独特,想这种方法叫填补法。

  板书:填补法

  师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。

  板书:求和

  小结:我们在怎么求出组合图形的面积的?

  强调:转化优化

  四:小结:这节课你有什么收获?

五年级数学教案《图形的面积》9

  教学要求:

  1.使学生理解组合图形的含义,初步了解组合图形面积的计算方法;

  2.会计算一些较简单的组合图形的面积,提高学生运用几何初步知识解决实际问题的能力。

  教学重点:使学生初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。

  教学难点:能正确地把组合图形分解成几个已学过的图形。

  教具准备:投影片若干

  教学过程:

  一、激发

  1.口答下列各图形面积的计算公式,并计算出它们的面积。

  2米3分米

  3米4米5分米

  2厘米

  1.2米10厘米

  1.6米2.5厘米

  2.揭题:在实际生活中,我们见到的物体表面,有很多图形是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。今天我们就学习组合图形面积的计算。板书课题:组合图形面积的计算。

  二、尝试

  1.投影出示例题:右图表示的是2米

  一间房子侧面墙的形状。它的'面积是

  5米

  多少平方米?

  5米

  2.引导学生看图思考并回答。

  (1)这个组合图形能否分解成几个

  我们学过的简单图形?

  (2)怎样求这个组合图形的面积呢?

  3.生计算出这个组合图形的面积。

  (1)生在书上例题下面填空。

  (2)集体订正时让学生说说怎样计算组合图形的面积?

  (3)师强调指出:计算组合图形的面积,一般是先把它分成几个我们学过的简单图形,分别计算出各个简单图形的面积,然后再把它们加起来,就是整个组合图形的面积。

  4.尝试后练习:做一做

  新丰小学有一块菜地,形状如

  右图。算出这块菜地的面积多少平

  方米。

  生独立审题,观察菜地的形状,思考将它分成几个什么样的简单图形,再让学生讲一讲,最后计算出这块菜地的面积。集体订正。

  三、应用

  1.练习十九第3题:量一量少先队的中队旗,算出它的面积。(你能想出不同的解法吗?)

  (1)生分组讨论:怎样分成几个我们学过的简单图形?

  (2)对分解合理简单的做法在投影仪上显示出来。

  (3)生选取一种方法,量出所需长度,再计算出它的面积。

  2.练习十九第4题:下面是一种机器零件的横截面图,求出涂色部分的面积是多少平方毫米。

  20毫米

  10毫米

  30毫米27毫米

  54毫米

  生独立计算出它的面积,集体订正时讲一讲自己是怎样想的。

  四、体验

  本节课,你有什么收获?

  五、作业

  练习十九第1、2题。

五年级数学教案《图形的面积》10

  第6单元 多边形的面积

  第7课时 组合图形的面积

  【教学内容】:教材P99例4及练习二十二第1~6题。

  【教学目标】:

  知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

  过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

  情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

  【教学重、难点】

  重 点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的

  条件。

  难 点:根据组合图形的条件,有效地选择计算组合图形面积的方法。

  【教学方法】:动手实践、自主探索、合作交流。

  【教学准备】:

  师:多媒体、各种平面图形。

  生:七巧板、简单图形学具、少先队中队旗实物。

  【教学过程】

  一、情境导入

  1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

  2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

  通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

  二、互动新授

  l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的'。出示教材第99页的各种图形。

  这些组合图形里有哪些是学过的图形?同学们试着找一找。

  小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

  汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。

  学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。风筝的面是由四个小三角形组成的,2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

  学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

  3.引导思考:关于组合图形,你还想研究它的什么知识?

  学生可能想到研究它的周长,也可能想到研究它的面积。

  适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。

  4.出示教材第99页例4:一间房子侧面墙的形状图。

  引导学生观察图并思考:怎样计算出这个组合图形的面积?

  组织学生小组合作学习,说一说是怎样分的,然后再算一算。

  集体汇报,学生可能会想到两种方法:

  (1)把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。

  教师可将学生的分法用多媒体展示:

  并根据学生回答板书:

  5×5+5×2÷2

  =25+5

  =30( m2)

  (2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。

  教师可将学生的分法用多媒体展示:

  并根据学生回答板书:

  (5+5+2)×(5÷2)÷2×2

  =12×2.5÷2×2

  =30(m2)

  教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

  三、巩固拓展

  1.完成教材第101页“练习二十二”第1题。

  先让学生对组合图形分一分,说一说是如何分割的,再计算。

  学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。

  2.完成教材第101页“练习二十二”第2题。

  本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。

  学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。

  3.完成教材第101页“练习二十二”第3题。

  先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

  四、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:

  1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。

  3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

  五、作业:教材第101页练习二十二第4、5、6题。

  【板书设计】:

  组合图形的面积

  由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) =30 (m2)

五年级数学教案《图形的面积》11

  教学目标

  1.借助方格纸,能直接判断图形面积的大小。

  2.通过交流,知道比较图形面积大小的基本方法。

  3.体验图形形状的变化与面积大小变化的关系。

  教学重点

  学习用数方格的方法判断图形的面积大小。

  教学难点

  图形中半格的数法。

  教具、学具

  方格纸挂图,学生准备小方格纸和与课本上相同的图形纸片。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、引导学生观察教学挂图。

  1.出示教学挂图,先让学生说说图上都有什么图形?

  2.引导学生观察挂图中的图形的面积之间有什么关系?你是怎么知道的(比较的方法)?

  3.引导学生进行方法比较。

  学生可以用自己准备的方格纸和图形纸片,通过,摆一摆,拼一拼,平移、旋转,剪和拼来找到这些图形面积之间的关系。学生会像课本上三个小朋友提出的关系来回答,也可能出现学生说通过数方格纸的格子来确定图形的面积,直接进行面积比较。对这些结论要加以肯定。

  学生说说用到了那些方法,先说常用的方法,在提出自己认为独特的方法。

  让学生根据自己的经验,能选择不同的图形进行面积大小的.比较,并通过图形面积大小比较,掌握一些比较的方法。

  培养学生总结、归纳知识的习惯。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  二、巩固应用

  练一练第1题

  学生读题后,让学生多观察一会儿

  提示学生把不能直接比较的图形变为能直接比较的图形。

  练一练第2题

  让学生根据自己的理解画图形,然后指导

  练一练第3、4、5题

  教师指导学生完成这3道操作性的题。

  三、全课总结

  总结比较图形面积的方法。

  学生独立思考。

  然后小组合作进行比较。可以用手头的工具剪拼一下。

  学生如果画的都是矩形,可以提示画其他图形,如:三角形以及其他图形。

  学生分小组进行活动在练习前应每个学生先剪一些图形

  通过学生的拼图活动,来认识图形形状变化而面积大小不变的现象。

  理解形状不同面积可以相同

  让学生进一步体会到,图形的形状不同,但它们的面积都是相等的

  板书设计: 比较图形的面积

  挂图: 这些图形的形状不同但面积相同。

五年级数学教案《图形的面积》12

  教学目标

  1.能直接在方格图上,数出相关图形的面积。

  2.能利用分割的方法,将较复杂的图形转化为简单的方法计算面积。

  3.在解决问题的过程中,体会策略、方法的多样性。

  教学重点

  利用方格纸数出,相关图形的面积。

  教学难点

  理解用分割方法,将复杂的图形变的`简单。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、探索活动

  1.出示情境图

  引导学生观察情境图提出问题:地毯上蓝色部分的面积是多少?

  2.让学生分小组先进行讨论。

  用什么方法得到面积,谁的方法比较简单。

  3.探索其它方法

  学生说说这个地毯上的图形的特点:

  像什么?是不是对称?等

  学生讨论探索求蓝色图形面积的方法。

  1、利用方格纸逐一数数得出面积。

  2、将图形分成原来的1/2数原来图形的一半再乘2得出面积。

  3、将图形分成原来的1/4数原来图形的一半再乘4得出面积。

  4、用大的面积(整个方格纸的面积)减小面积(空白部分的面积)来得出图形的面积。

  学生要有其他方法只

  引导学生观察蓝色图形的特点,然后探索求蓝色图形的面积的方法。体会解决这个问题的方法的多样性。

  教师指导与教学过程

  学生学习活动过程

  设计意图

   还有别的方法吗?

  二、 巩固练习

  练一练第1题

  指导学生用逐一数的方法数出这些图形的面积(告诉学生不满一格的当半格数)

  练一练第2题

  这道题每道题都有多种解法。先让学生独立思考,然后再进行小组讨论,集体汇报。

  三、总结并布置作业

  要合理正确,要加以肯定。

  学生自己数,教师巡视帮助更正。

  第一幅图空白部分少也可以先看整个方格是6×3,空白部分时5.5所以它的面积是

  18-5.5=12.5cma

  学生自己看图可以用地毯面积求法,多想几种方法,越多越好,看谁的方法多。

  练一练第3题

  教师肯定学生各种正确的方法,

  在完成本题的过程中让学生体会解决问题的多样性。

  板书设计:地毯上的图形面积

  18-5.5=12.5cma

  教学反思:

五年级数学教案《图形的面积》13

  组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  1. 识组合图形。

  编写意图

  由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。

  首先教材提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。

  教学建议

  (1)教学中,可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。

  (2)观察实物注意从易到难,例如教材中的房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。

  (3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。

  2.例4及“做一做”。

  编写意图

  例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。

  “做一做”主要巩固组合图形面积计算,图示已经把菜地分解成一个平行四边形和一个三角形,只需分别计算出它们的面积,再求和。

  教学建议

  (1)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。

  (2)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可以结合学生提出的`方法,让学生比较一下,哪种方法比较简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。

  (3)“做一做”可由学生独立完成,再说说是怎样算的。同时可以检查学生对平行四边形和三角形面积计算公式掌握的情况。

  3. 关于练习十八一些习题的说明和教学建议。

  第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的方法计算。第2题提出了“你能想出几种算法?”可以结合第2题进行讨论。一般有以下几种算法。

  ①求两个梯形面积的和(下左图)

  [(80-20+80)×30÷2]×2

  = (80-20+80)×30

  = 4200(cm2)

  ②求一个长方形和两个三角形面积的和(下中图)

  (80-20)×(30+30)+(30×20÷2)×2

  =(80-20)×(30+30)+30×20

  = 3600+600

  = 4200(cm2)

  ③用一个长方形的面积减去一个三角形(下右图)

  的面积

  80×(30+30)-(30+30)×20÷2

  =4200(cm2)

  第3、4、5题的思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。

  第8*题是选作题。根据长方形的长与宽,可以求出它的面积。

  18×12 = 216(m2)

  红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。

  从设计图可以得到:

  绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108 (m2)。

  红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4 = 54(m2)。

五年级数学教案《图形的面积》14

  教学目标:

  1、知识目标:懂得将较复杂图形进行分割、填补、移动的方法。

  2、能力目标:能通过独立思考、合作交流、动手操作的学习活动,会直接在方格图上,数出相关图形的面积,特别是利用化繁为简的方法、割补、移动等方法求出图形的面积。具有处理图形的思维方式和能力。

  3、情感目标:使学生在学习活动中体会解决问题的策略、方法的多样性,激发学习兴趣,培养探索的精神。

  教学重点:

  利用分割的方法,把较复杂的图形转化为简单的图形再计算。

  教学难点:

  会用较简单的方法计算图形的面积。

  教法学法:

  根据本节教材的内容和编排特点,为了更有效地突出重点,突破难点,从学生已有的知识水平和认识规律出发,本节课采用学生动手操作、以实验发现为主。在实施教学中,我充分利用多媒体课件演示,组织学生观察比较、动手操作、适时地演示;运用电教媒体化静为动,发动学生进行交流合作,激发学生主动探索问题的积极态度,培养学生的思维能力和推导归纳能力。

  教具准备:

  多媒体、课件,学具为有地毯图样的小卡片。

  教学过程:

  一、创设情境,引入课题

  1、谈话导入。

  师:上节课我们一起学习了利用方格图求一些图形的面积,看今天今天老师又给大家带来了什么?想看吗?

  2、课件出示:四副有美丽图案的地毯,让学生观看后说说

  美在哪里?引出下面的学习内容:地毯上的图案

  3、课件出示有蓝案的`地毯图片。

  笑笑和淘气看见一块地毯,图形如下图,笑笑想,地板上的瓷砖铺成的图形多美啊!这里面有什么数学问题吗?(一个小方格表示1平方米)

  生:是对称图形,是由许多小正方形组成的。

  师:对,大家观察很认真,这个图形是对称的,很美。

  师:给大家提了一个数学问题,看着这幅图,大家猜一猜可能是什么问题?

  生:地毯上蓝色部分的面积有多大?

  师:猜得真准。今天我们就来研究“地毯上的面积”。(板书)

  二、自主建构,合作探究

  1、独立探究,寻找解决策略

  师:大家每人手中都有一张跟大屏幕上完全一样的图。先独立思考,将想到的方法简单地记录到练习本上。

  (学生独立思考,教师巡视。)

  2、合作交流,对比择优

  师:先在小组内说一说各自发现的方法,然后记录到合作卡上。比一比哪个小组发现的方法最多,最简便。

  (学生小组内进行交流。)

  师:大家都讨论得很充分了,哪个小组愿意把你们的方法与大家分享?

  生1:直接一个一个地数,为了不重复,在图上编号。

  生2:用总的14×14的正方形面积减去白色部分的面积。

  生3:因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。

  生4:转移填补,将中间8个蓝色小正方形转移到四周蓝色色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。

  师:对于各组发现的方法,你们认为哪种更简便,为什么?

  生:方法1直接数太麻烦,方法3把这个图形分割成4块,算出或数出其中一块的蓝色面积再乘4比较简便。

  生:方法4想法很巧妙,也比较简便。

  ……

  师:(小结)大家对比很认真。对于这种在方格图中计算图形的面积,我们可以直接一个一个地数,也可以用大面积减小面积,还可以对整体进行分割,一部分一部分数或算。具体运用哪种方法,要根据实际情况灵活对待。

  三、全课小结,课后拓展。

  师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,还可以“大减小”。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。有兴趣的同学可以在空白方格上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积,还可以把他们写进数学日记。

【五年级数学教案《图形的面积》】相关文章:

五年级数学教案:组合图形的面积计算04-07

《组合图形的面积》教案01-26

数学五年级上册教案:组合图形的面积04-04

数学组合图形的面积教案02-11

《组合图形的面积》教案20篇08-02

五年级上册数学《组合图形的面积》教案03-07

组合图形的面积教学反思(精选14篇)03-20

《组合图形的面积》教案(通用15篇)01-07

小学数学《组合图形面积》优秀教案08-26