分数除法优秀教案

时间:2023-10-23 12:48:47 其它教案 我要投稿

分数除法优秀教案

  作为一名优秀的教育工作者,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!下面是小编精心整理的分数除法优秀教案,欢迎大家分享。

分数除法优秀教案

分数除法优秀教案1

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的.商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

分数除法优秀教案2

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  xx×4 ×3 ×2 ×6

  xx÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷ 如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示xx小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是xx小时走的路程)

  (3)引导学生讨论交流:已知xx小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的.回答把线段图补充完整,并板书出过程。

  先求xx小时走了多少千米,也就是求2个xx,算式:2×

  再求3个xx小时走了多少千米,算式:2× ×3

  (5) 综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算 ÷ ,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  xx÷xx =xx × xx=2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

分数除法优秀教案3

  学习目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2 .掌握一个数除以分数的计算方法,并能正确进行计算。

  学习重点:理解一个数除以分数的意义和基本算理。

  学习难点:运用分数除法的计算方法解决实际问题。

  学习内容:

  一、分一分

  有4张同样的圆形纸片。

  (1)每2张一份,可以分成多少份?

  画一画:

  列示:

  (2)每1张一份,可以分成多少份?

  画一画:

  列示:  (3)每1/2张一份,可以分成多少份?

  画一画:

  列示:

  (4)每1/3张一份,可以分成多少份?

  画一画:

  列示:

  (5)每1/4张一份,可以分成多少份?

  画一画:

  列示:

  二、画一画

  1.有1根2米长的绳子。

  (1)截成每段长1/3米,可以截成几段?

  画一画:

  列示:

  (2)截成每段长2/3米,可以截成几段?

  画一画:

  列示:

  2.3/4里面有几个1/8?

  画一画:

  列示:

  三、填一填,想一想

  在〇里填上“>”“<”或“=”。

  4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

  2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

  你发现了什么?( )

  四、试一试

  8÷6/7 5/12÷3

  你能把“除以一个整数(零除外),等于乘这个整数的.倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

分数除法优秀教案4

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

  (1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

  (3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

  1、教师课件出示例4

  2、课件出示自学提纲:

  (1)例4中的哪些条件和复习中的3相同?问题相同吗?

  (2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

  (3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

  (1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  (1)计算1/5÷(2/3+1/5)×15

  (2)说说运算顺序,再进行计算。

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

  (2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的'高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、 在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、 当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

【分数除法优秀教案】相关文章:

《分数除法》优秀教案(精选10篇)04-20

分数除法的教案05-08

分数除法教案01-14

《分数与除法 》教案03-08

分数与除法教案01-19

数学《分数除法》教案01-31

分数除法教案设计05-27

分数除法教案15篇01-15

分数除法教案(15篇)01-15