运算定律教案

时间:2023-01-23 16:58:05 其它教案 我要投稿

运算定律教案

  作为一位不辞辛劳的人民教师,常常需要准备教案,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?下面是小编精心整理的运算定律教案,欢迎阅读,希望大家能够喜欢。

运算定律教案

运算定律教案1

  教学目标:

  1.能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学过程:

  一、复习巩固

  回忆上节课学习的.关于加法的运算定律。

  (1) 加法交换律

  (2) 加法结合律

  根据学生的汇报板书。

  二、新授

  出示:例5

  下面是李叔叔后四天的行程计划。

  第四天 城市A→B

  第五天 城市B→C

  第六天 城市C→D

  第七天 城市D→E

  A→B 115千米

  B→C 132千米

  C→D 118千米

  D→E 85千米

  根据上面的条件,你们能提出什么问题?

  教师根据学生的提问,有选择性地将问题板书。

  请你们在练习本上列出综合算式解答黑板上的问题。

  汇报自己的答案,并说明理由。

  重点引导学生对最后一个问题(按照计划,李叔叔在后四天还要骑多少千米?)进行汇报。

  学生可能对括号问题有异议

  教师可以正确引导,加法中为了更清楚地体现运算顺序,所以要加小括号。

  既用到了加法交换律,也用到了加法结合律。

  这道题我们运用了加法中的什么运算定律?

  通常在简便计算中,加法交换律和加法结合律是同时使用的。

  三、巩固练习

  P30/做一做

  四、小结

  学生汇报学习的内容,以及自己的收获

  这节课你有什么收获?

运算定律教案2

  学习目标

  1、通过复习熟练掌握四则运算的五大定律和两大性质。

  2、认真地审题,并能根据运算定律进行合理地简便运算。进一步提高计算的正确率和速度。 导学流程 温故知新

  知识导图:(用字母表示出来)

  1、加法的运算定律1加法交换律:

  2加法结合律:

  1乘法交换律:

  2乘法结合律:

  2、乘法的运算定律

  3乘法分配律:

  减法的.运算性质:

  除法的运算性质:

  导学导练

  简算

  (1)628+182+472+18(2)624-85-15

  (3)45×11×2(4)96×101-96

  (5)3400÷25÷4(6)723-(123+159)

  课堂检测

  一、填空我最棒

  1、26+285+315=26+(285+315),此题运用了()律。

  2、7×4×6×25=7×6×(4×25),此题运用了()律,也运用了()律。

  3、1÷(12×25)=1÷12÷25,这样计算是根据()。

  简算

  1、444-56-442、101×147-147

  3、25×164、88×125

运算定律教案3

  一、教学目标

  (一)知识与技能

  使学生在已有知识经验的基础上,进一步认识用字母表示数的优越性,掌握用字母表示数的方法,会用字母表示数的方法进行表达和交流,发展符号意识。

  (二)过程与方法

  让学生经历用字母表示数的过程,积累数学活动经验,进一步培养学生的抽象概括能力和符号意识。

  (三)情感态度和价值观

  在探究活动中增强学生的数感,体会数学与生活的紧密联系渗透丰富的数学文化。

  二、教学重难点

  教学重点:掌握用字母表示数的方法,会把已知数据代入公式求值。

  教学难点:会用字母表示数的方法进行表达和交流,建立符号意识。

  三、教学准备

  多媒体课件、作业纸等。

  四、教学过程

  (一)唤起回忆,导入新课

  1.复习旧知:在括号里填上合适的式子。

  (1)小明原有a本故事书,捐献给云南灾区小朋友6本,还剩( )本。

  (2)公共汽车上原有乘客16人,到中山公园站上车b人,现在车上有( )人。

  (3)一种糖果每千克a元,买20千克需要( )元,买b千克需要( )元。

  (4)一种空调50台的总价是c元,那么一台空调的单价是( )元。

  2.谈话引入。

  生活中许多数量都可以用含有字母的式子来表示。今天我们继续学习《用字母表示数》。

  3.板书课题:用字母表示数。

  【设计意图】从生活中的实例引入,复习用字母表示简单的数量关系,唤醒学生对数学中经常用字母表示数的感知,为新课的学习做好铺垫。

  (二)提供素材,掌握表示方法

  1.合作学习,尝试用字母表示运算定律和计算公式。

  (1)在我们学过的数学知识中,你还见过哪些用字母表示数的例子?

  (2)提供运算定律、计算公式等素材,学生独立尝试用字母表示后小组交流。

  ①以运算定律和计算公式为例来研究:怎样用字母表示数?

  ②阅读活动要求,小组展开研究,指名演板。

  (3)全班汇报反馈。

  【设计意图】符号意识是《义务教育数学课程标准(20xx年版)》中提出的十大核心概念之一,它要求使学生能够理解并且运用符号表示数、数量关系和变化规律。因此,将两个小例题融合,以研究记录单的方式为学生提供运算定律和计算公式这些研究的素材,通过学生自由选取学习素材、独立尝试、小组合作探究和全班汇报交流等教学活动,探究用字母表示数的方法,积累一定的数学活动经验。

  2.明确用字母表示数的一般方法及其优越性简明易记。

  (1)感受用字母表示数的优越性。

  ①反馈交流:看到a+b=b+a,你想到了什么运算定律?什么叫加法交换律?剩下的每个式子各表示哪个运算定律?谁来说一说?

  ②观察对比:过去表示一个运算定律,我们要说一长段话,现在大家用字母也能表示运算定律,你们有什么感受?(板书:简明易记,便于应用)

  ③S=aa表示什么意思?C=a4表示什么意思?

  ④小结:大家可以用字母来表达、交流运算定律和计算公式。

  (2)含有字母式子中省略乘号的书写方法。

  ①(出示用字母x 、y、z表示的运算定律)看到用x 、y来表示,有什么想法?(乘号和字母x很相似)想用什么办法来解决?

  ②介绍德国数学家莱布尼茨为了避免乘号与x混淆,提出将记作 。

  ③出示规定:在含有字母的式子里,字母中间的乘号可以记作 ,也可以省略不写。这个规定是什么意思呢?在怎样的式子里才能使用这个规定?

  ④按照这个规定,将xy=yx简写。

  ⑤学生独立将可以简写的运算定律和计算公式进行简写,指名演板,集体订正。

  ⑥注意:在含有字母的乘法式子里,乘号可以记作 或省略不写。在加、减、除的运算中还是按照原来的表达方法。

  【设计意图】用字母表示数的优越性不能一带而过,要让学生在实际的活动中亲身体验、真切感受。为此,设计了用文字表示的运算定律和用字母表示的对比,让学生形象地感受到数学的符号语言的简洁明了。学生在尝试用字母表示运算定律活动中出现问题,从而学习含有字母式子中省略乘号的书写方式更有说服力,真正体验到 省略的妙处,逐步形成一定的符号感。

  3.明确在乘法式子中用字母表示数的方法。

  (1)平方的书写方法。

  ①在正方形的计算公式中,像这样两个相同的字母相乘aa除了简写成aa,还有更简便的表示方法吗?

  ②指导学生a?的含义及写法。

  ③把下面各式写成一个数的平方的形式,并读一读。

  ④比一比:2a和a?意思相同吗?为什么?

  ⑤长方形的周长计算公式能像这样表示得更简便吗?

  ⑥小结:通过大家的尝试,我们结合运算定律和计算公式,掌握了用字母表示数的方法。在用字母表示的运算定律中a、b、c可以表示哪些数?在计算公式中字母a、b则分别表示大于0的数。

  (2)把已知数据代入计算公式求值。

  ①如果a=6厘米,你能求出正方形的面积吗?

  ②把数代入公式,数与数相乘,乘号不能省略。单位是平方厘米,也可以用字母表示。

  ③学生独立求出正方形的'周长。

  ④小结:知道了字母所表示的数,我们就能应用公式很快求出计算结果。

  【设计意图】放手让学生自主探索,尝试用字母表示计算公式,然后结合学生出现的问

  题再进行讲解,有利于学生主体作用的发挥,对知识的体验更深刻。

  (三)史料介绍,渗透数学文化

  1.课堂总结:今天在用字母表示数的过程中,你有哪些收获?通过大家的尝试,在乘法中用字母表示数时,我们可以怎样表示?

  2.数学文化渗透:介绍代数之父韦达及其研究成果。

  【设计意图】结合整节课的学习内容,有意识地引导学生小结含有字母式子(乘法)的

  书写习惯,有利于学生书写的规范,促进良好学习习惯的养成。韦达故事的介绍,有助于增加学生对字母表示数的学习兴趣,深化对知识的理解,让数学课堂彰显数学文化的本性。

  (四)巩固运用,拓展延伸

  1.课本第56页练习十二第5题。

  (1)理解题意:省略乘号什么意思?

  (2)学生独立完成,集体订正。

  (3)指导:字母和1相乘时,乘号和1可以一起省略不写,b1可以简写成b。

  2.课本第56页练习十二第6题。

  (1)学生独立完成,集体订正。

  (2)设疑:a2的好朋友是谁呢?62呢?等于多少?62等于多少?

  小结:62和62不仅结果不同,意义也不同。

  【设计意图】通过省略乘号的书写、平方意义的练习,促进学生掌握含有字母的乘法式子的书写习惯,形成技能。

  (五)课堂作业

  课本第56页第7、8题。

运算定律教案4

  教学目标:

  1.建立角的概念,认识角的各部分名称,掌握角的符号表示法及读法;

  2.认识量角器和角的计量单位,会使用量角器正确地度量角的度数;

  3.进一步培养学生的观察能力、操作能力,发展学生的空间观念,感受数学的乐趣与严谨,激发热爱数学的热情。

  教学重点:

  能正确使用量角器度量角的度数。

  教学难点:

  认识量角器和角的计量单位,量角器的正确使用方法,知道角的大小与边的长短无关,而与两边叉开的大小有关。

  教具学具准备:

  教具:多媒体课件、视频展示台

  学具:直尺,量角器

  教学过程:

  一、复习引入,认识角

  1.复习引入

  教师:前面我们学习了射线,请同学们确定一个点,以这个点为端点向不同的方向画两条射线。

  学生操作后,选学生有代表性的作业在视频展示台上展出。

  教师:有什么发现?这些图形是什么?

  引导学生回答:这些图形是角。

  2.认识角

  教师:从一点引出两条射线所组成图形是角,这个点就是角的顶点,两条射线就是角的边。(多媒体展示)

  教师:我们可以用“∠”来表示角。(板书:∠)

  教师:如果给这个角编上序号1,就可以用“∠1”来表示这个角,读作“角一”。大家一起叫叫这个角的名字。

  学生读“角一”。

  教师:大家认识了“角一”,你又能叫出这个角的名字吗?

  学生:它叫“角二”。

  教师:“角一”和“角二”谁大?

  教师:这些角哪些角大,哪些角小呢?我们除了可以观察和重叠比较外,还可以通过角的度量来解决这个问题。

  二、教学角的度量

  1.认识量角器

  师:那么怎样量角呢?今天我们就一起来学习量角的方法。(板书:角的度量)

  师:我们可以使用一个数学工具就是量角器,课件展示量角器。

  请同学们仔细观察量角器,仔细看一看,能说一说你从量角器上看到些什么吗?

  生1:量角器有很多刻度,像个半圆形。

  生2:有内外两圈刻度。

  师:有两圈刻度是为了我们量角的方便,知道这些刻度把这个半圆平均分成了多少份吗?

  生:180份。

  师:对,我们把半圆平均分成180份,每一份所对应的角的大小就是1度,记作1°(课件出示1°,让学生认识1°,同时显示外圈数字)。

  课件出示量角器中心的位置,让学生观察。

  师:刚才大家都说有两圈刻度,请同学们接着观察你们的量角器,内圈刻度是哪边开始的?

  生:从右边开始的。(显示内圈刻度和数字)

  师:现在我们就得到了一个标准的量角器,同学们能找到有0°的`刻度线吗?有几条?

  生:2条。

  师:这样的量角器就方便同学们从两个不同的方向测量角的度数。(分别闪烁)课件展示外刻度和内刻度进行区别。

  师:现在请同学们找到90度的刻度线在哪里?(抽生上展示台演示)

  2.用量角器量角的大小

  师:这条标有0°的刻度线叫做0°刻度线。这是一条很重要的刻度线,量角时,要把这条刻度线重合在角的一条边上,并且让量角器的这个中心点与角的顶点重合,这叫做“两重合”。

  师边讲边演示,要求学生也像这样做一做。

  师:当量角器的中心点与角的顶点重合,0°刻度线与角的一边重合后,我们可以看一看角的另一边是多少度,这个角就是多少度。

  抽生试一试,量出角的度数。

  生:汇报测量的方法。

  师引导总结出量角的方法:(生说出一点后在多媒体上出示一点)

  (1)量角器的中心和角的顶点重合。

  (2)0°刻度线和角的一边重合。

  (3)角的另一边在量角器上的刻度就是这个角的度数。

  3.判断量角的方法对吗?课件展示,学生判断。

  三、即时练习

  1.操作时间,拓展新知

  做活动角

  师:请同学们拿出课前准备的两根纸条,将它们重合在一起,并用图钉把它们的一端钉起来,这样我们就做起了一个活动角。师生一起操作

  师:请同学们旋转其中一根硬纸条,观察一下角的大小变化。师生一起操作。

  师:从这个实验中看你们有什么发现?小组交流一下。

  师引导学生说出角的大小与角两边张开的大小有关(板书)。

  2.完成书66页课堂活动第2题。

  师:现在请同学们利用刚刚学的量角的方法完成书上66页第2题。

  学生操作,师巡视辅导。

  四、课堂总结

  同学们,今天我们学习了什么内容?你有什么收获?

运算定律教案5

  教学目标

  知识与技能

  1、通过观察发现,掌握加法交换律的意义。

  2、学会用自己喜欢的方式表示加法交换律,初步感知代数思想。

  3、会运用加法交换律验算加法。

  过程与方法

  1、经历加法交换律的发现过程,体验观察比较,举例论证,总结归纳的学习方法。

  2、经历加法交换律的应用过程,体验数学知识间的联系和它的广泛应用性。

  情感、态度与价值观

  让学生感受发现知识的快乐,激发学生的兴趣,感受数学与生活的联系。培养学生学数学、用数学的乐趣。

  教学重难点

  教学重点:理解并掌握加法的交换律。

  教学难点:能根据实际情况,在计算式灵活应用加法运算律。

  教学工具

  多媒体、板书

  教学过程

  创设情境,探究新知

  李叔叔准备骑车旅行一星期,他今天上午骑了40 km,下午骑了56千米,李叔叔今天一共骑了多少千米?

  (1)理解题意

  求李叔叔今天一共骑了多少千米,就是求上午和下午一共骑了多少千米?

  用加法:40+56或56+40

  师:今天我们就来学习一下加法运算的定律。

  板书:加法运算定律

  (2)解决问题

  40+56=96(km)或56+40=96(km)

  (3)观察算式,发现定律

  两道算式的得数相同,所表示的都是李叔叔今天一天骑的路程,因此两道算式之间可用等号连接,即40+56=56+40

  观察40+56=56+40,发现,等号左、右两边的加数相同,只是交换了位置,但结果不变。由此可以得出结论:交换加数的位置,和不变。

  (4)验证定律

  是否所有的加法算式交换加数的位置,和都不变呢?可以举例验证。如:

  0+200=200;200+0=200所以0+200=200=0

  11+78=89;78+11=89所以11+78=78+11

  发现:任意两个数相加,交换加数的位置,和不变,这就是加法的交换律。

  (5)用字母表示定律

  在数学当中通常用字母表示定律,若用a,b分别代表两个加数,则加法交换律就可以表示为a+b=b+a(a,b代表任意数)。用字母表示更加直观、方便。

  板书:加法交换律:a+b=b+a

  归纳总结1:两个加数交换位置,和不变,用字母表示为:a+b=b+a。

  随堂练习:

  小红有24支水彩笔,小刚有16支水彩笔,小红和小刚一共有多少支水彩笔?

  答案:24+16=40(支)或者16+24=40(支)

  探究新知2:加法结合律

  情境导入:

  问李叔叔这三天一共骑了多少千米?

  1、理解题意

  师:要求三天一共骑了多少千米,就是求第一天所骑的加上第二天再加上第三天所骑的所有路程是多少,列式:88+104+96

  2、解答:

  方法一:按从左往右的顺序:

  88+104+96

  = 192+96

  = 288(千米)

  方法二:观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。

  即:88+104+96

  = 88+(104+96)

  = 88+200

  = 288(千米)

  答:李叔叔这三天一共骑了288千米。

  3、发现规律

  观察两种解题方法,发现:一是先把前两个数相加,再加上第三个数,方法二是先把后两个数相加,再和第一个数相加,他们的计算结果相同,因此,

  可以写成等式(88+104)+96=88+(96+104)

  归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律。

  4、用字母表示定律

  如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)

  板书:加法结合律(a+b)+c=a+(b+c)

  活学活用:

  有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?

  68+(59+41)

  = 68+100

  = 168(米)

  答:三块布一共有168米

  探究新知3:加法中的简便运算

  下面是李叔叔后四天的行程

  1、理解题意

  师:要想求李叔叔后四天还要骑多少千米,只要把后四天所有的路程加起来就行了,列式为:115+132+118+85

  2、观察算式特点

  师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:

  115+132+118+85

  = 115+85+132+118

  加法交换律=(115+85)+(132+118)

  加法结合律

  = 200+250

  = 450

  3、解答

  115+132+118+85

  = 115+85+132+118

  =(115+85)+(132+118)

  = 200+250

  = 450(千米)

  归纳总结:

  在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。

  活学活用:

  丁杰看一本故事书,第一天看了62页,第二天看了93页,这时还剩下138页没有看,这本故事书一共有多少页?

  答案:62+93+138

  =(62+138)+93

  = 200+93

  = 293(页)

  答:这本故事书一共有293页。

  探究新知4:连减的简便运算

  情境导入

  一本书一共有234页,还有多少页没看?

  1、理解题意

  师:已知总页数是234页,减去昨天和今天看的,就是剩下的.。

  2、列式子

  解法一:(1)今天看的66+34=100(页)

  (2)剩下的234—100=134(页)

  解法二:从总页数中减去今天看的34页,再减去昨天看的66页,

  剩下的就234—34—66=134(页)

  3、比较发现

  比较以上解法得数是一样的,可知:从一个数中连续减去两个数,也就相当于从被减数中减去两个减数的和,在连减算式中任意交换减数的位置,差不变。

  即:a—b—c=a—(b+c);a—b—c=a—c—b

  活学活用:

  妈妈拿100元去超市购物,买蔬菜花了26元,买水果花了24元,还剩多少钱?

  答案:100—26—24=50(元)

  拓展提升:

  1、计算:1+2+3+4+5......+48+49+50

  师解析:

  方法一:观察这组数据发现,1+50=51,2+49=51,3+48=51…、25+26=51

  50个数相加,两两结合为25组,每组的和都为51,这样可以算出答案:51×25=1275

  方法二:如果把50个数倒过来写,分别相加,就是50个51相加再除以2,即是答案。

  即:1+2+3+4…、+48+49+50

  =(1+50)×(50÷2)

  =1275

  归纳总结:解决问题要动脑,这样会找到多种解决问题的方案,解答时要选择一个最简便的方法。

  举一反三:

  用简便方法计算:199999+19998+1997+196+95

  答案:199999+19998+1997+196+95

  = 200000+20000+20xx+200+100—(1+2+3+4+5)

  = 222300—15

  = 222285

  归纳小窍门:当算式中的数字较大时,可以利用估算的思路,把它们都看做是和它们最接近的整百、整千、整万…、的数,计算出结果后,再减去多加的部分。

  课后小结

  这节课你学会了什么呢?

  a、这节课我们学习了加法运算律和加法结合律

  用字母表示为a+b=b+a;a+b+c=a+(b+c)

  b、数学运算时要选择简便运算方法,在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。

  课后习题

  1、计算下列算式

  138+227+173 69+406+94

  答案:138+227+173 69+406+94

  = 138+(227+173)= 69+(406+94)

  =138+400 =69+500

  =538 =569

  2、一根钢丝,第一次用去187米,第二次用去145米,这时还剩下113米,这根钢丝全长多少?

  答案:187+145+113

  =(187+113)+145

  = 300+145

  = 445(米)

  答:这根钢丝全长445米

  板书

  加法运算律

  加法交换律加法结合律

  a+b=b+a;a+b+c=a+(b+c)

  善于发现简单法,计算准确快又好

运算定律教案6

  教学目标:

  1.能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重难点:

  1.教学重点:学会运用加法运算定律进行一些简便运算。

  2.教学难点:如何灵活地运用加法运算定律进行一些简便运算。

  教学方法:创设情境、质疑引导独立思考,类比应用,合作交流。

  教学过程:

  一、创设情景,生成问题

  1、上节课我们学习了加法的两个运算律,谁来说一说?

  (说说其意思,或字母表达式)a+b=b+a(a+b)+c=a+(b+c)

  2、用加法交换律,我们可以做什么?(验算)。那加法交换律和加法结合律还有什么作用呢?我们一起来看例题。

  (设计意图:通过复习旧知巩固上节课所学内容,为后面新知的学习作好铺垫。)

  二、探索交流,解决问题

  1、同学们,通过上节课的学习,我们知道了李叔叔前四天的旅程,你们想不想知道他后四天的旅程呢?

  (设计意图:通过谈话,进一步激发学生的学习欲望,为下面的教学做好铺垫。)

  多媒体出示:例3

  下面是李叔叔后四天的行程计划。

  第四天城市A→B

  第五天城市B→C

  第六天城市C→D

  第七天城市D→E

  A→B115千米

  B→C132千米

  C→D118千米

  D→E85千米

  (1)根据上面的条件,你们能提出什么问题?

  教师根据学生的提问,有选择性地将问题板书。

  (设计意图:通过本环节的`教学,让学生自主发现问题并提出问题,培养学生的观察能力和发现问题的能力。)

  (2)请你们在练习本上列出综合算式解答黑板上的问题。

  汇报自己的答案,并说明理由。

  (3)重点引导学生对最后一个问题(按照计划,李叔叔在后四天还要骑多少千米?)进行汇报。

  学生可能对括号问题有异议,教师可以正确引导,加法中为了更清楚地体现运算顺序,所以要加小括号。

  既用到了加法交换律,也用到了加法结合律。

  这道题我们运用了加法中的什么运算定律?

  通常在简便计算中,加法交换律和加法结合律是同时使用的。

  小结:从刚才的例子中我们知道,在加法计算中,两个数能凑在整百数,一般用加法运算律,先进行计算,使计算简便。

  (设计意图:通过前面的教学,学生对加法交换律和结合律能够灵活的运用,本环节可大胆的放手学生,让其自主探索,培养学生独立的思维能力。)

  三、巩固应用,内化提高

  1、练习五第5题,生独立计算,回报交流。

  (设计意图:学以致用,增加学生的成功欲望,激励学生的学习兴趣。)

  2、练习五第6、7题,生独立计算,回报交流。

  3、请在横线上填上合适的数使式子运算更简便.

  365+423+35+77=(365+)+(423+)

  34+242+366+58=(34+)+(+242)

  27+325+75+473=(27+)+(+75)

  489+222+511+178=(489+)+(+178)

  (设计意图:进一步巩固提升本节课所学的知识。)

  四、回顾整理,反思提升

  这节课你有什么收获?

  板书设计:

  加法运算定律的应用

  按照计划,李叔叔在后四天还要骑多少千米?

  115+132+118+85

  =115+85+132+118←加法交换律

  =(115+85)+(132+118)←加法结合律

  =200+250

  =450(千米)

  教学反思

  这节课我注重让学生探究、尝试,让学生交流、质疑。相应地,老师发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。

  不足

  在教学中有的同学不能跟上教学思路,在回答问题时表现的似懂非懂,没能够及时点拨。

  改进措施

  在今后的教学中注重每个学生的发展,使每个学生都能体会到学习的成功与快乐。

运算定律教案7

  一、教学目标

  1、使学生知道整数乘法的运算定律对于小数乘法同样适用,能运用乘法的运算定律正确地、合理地、灵活地进行小数乘法的简便计算。

  2、培养学生的观察能力,类推能力和灵活运用所学知识解决问题的能力,培养学生的简算意识。

  3、让学生相互交流、合作、体验成功的喜悦。激发学生感受美,发现美的情感。

  二、学情分析

  大多数学生能很好的掌握小数乘法和整数乘法的运算定律,并能灵活应用,理解能力和接受能力都较强,所以我通过微课让学生课前自学,课上小组交流汇报的.形式强化知识点,再通过多种形式的练习巩固知识。

  三、重点难点

  教学重点:

  1、理解整数乘法的运算定律在小数乘法中同样适用。

  2、运用整数乘法的运算定律进行小数乘法的简便计算。

  教学难点:运用运算定律进行小数乘法的简便计算。

  四、教学过程

  4.1第一学时

  4.1.1教学活动

  活动1【导入】整数乘法运算定律推广到小数

  活动2【活动】整数乘法运算定律推广到小数

  研学提示:

  填一填:小组内交流表格内问题,小组长认真填写。

  想一想:观察表格中的例题,认真思考你有什么发现?

  说一说:通过微课的学习后,布置了2道运用运算定律计算的题,和学习小伙伴交流你是怎么做的,为什么?

  活动3【练习】整数乘法运算定律推广到学生

  1、快乐填一填:

  0.25×4.78×4=4.78×( × )

  2.33×0.5×4= ×( × )

  0.65×(200+1)= × + ×

  6.7×0.7+0.3×6.7= ×( + )

  2、抽数游戏

  ①运气题

  规则:四组各选一名学生上台到信封里抽一个数,抽到这个数只能放到本组算式里,看能否组成一道能简便的算式

  第一组:0.25×8.5×( )

  第二组:1.28×( )+0.72×8.6

  第三组:0.85×( )

  第四组:3.12×99+( )

  ( 4 8.6 99 3.12)

  师:你希望你们组抽到几?为什么?

  学生抽数,贴好

  师:你为什么叹气?

  师:这次运气不好没关系,我们可以凭聪明才智改变运气。

  ②眼光题:

  规则:四组各选一名学生上台到信封里抽一个数,抽到的这个数根据自己的判断放到合适的算式里组成一道能简便的算式

  0.25×( )

  0.47×7.5-( )×6.5

  0.125×0.25×( )

  18.4×101-( )

  ( 36 0.47 8 18.4)

  师:这次大家高兴吗?这些算式怎样简便呢?动手算算。学生独立完成,请学生上台板演说想法。

  提高题:

  灵活用一用

  教学楼侧有一块草地(如图)这块草地的面积有多少平方米?

  2.4米 2.4米

  6.2米 3.8米

  活动4【作业】整数乘法运算定律推广到小数

  今天我们学习了什么知识?我们是怎样获得知识的?

  如果换成分数这些运算定律能适应吗?课后我们也可以象这节课一样通过举例验证。

运算定律教案8

  学习目标

  1、会运用乘法结合律,能运用运算定律进行一些简便运算。

  2、能根据具体情况,选择算法的意识与能力,发展思维的灵活性

  3、能用所学知识解决简单的实际问题。

  重点难点

  重难点探究和理解结合律,能运用运算定律进行一些简便运算。

  学具准备

  学习过程

  二次备课

  激趣定标

  一、激趣导入

  主题图引入(观察主题图,根据条件提出问题。)

  (1)一共要浇多少桶水?

  二、揭示课题,展示学习目标。

  自学互动

  适时点拨

  活动一

  学习方式小组合作

  学习任务

  1、针对上面的问题1列出算式,有几种列法。

  2、为什么列的式子不同,它们的'计算结果是怎样的。

  3、两个算式有什么特点?你还能举出其他这样的例子吗?

  4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?

  5、乘法结合律有什么作用。

  6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?

  7、1这组算式发现了什么?

  2举出几个这样的例子。

  3用语言表述规律,并起名字。

  4字母表示。

  活动二

  学习方式小组合作

  学习任务

  1、小组讨论乘法的结合律、结合律用字母怎样表示。

  2、各小组展示自己小组记定律的方法。

  3、分别说说是用什么方法记住这些运算定律的。

  4、讨论为什么要学习运算定律。

  先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

  巩固应用

  在什么时候使用乘法结合律。使用这个运算定律的结果是什么。使用它们的优点是什么。

  怎样用乘法的结合律计算25×32×125

  测评训练

  1、下面的算式用了什么定律

  (60×25)×8=60×(25×8)

  2、P37/2—4P35/做一做2

  3、在□里填上合适的数。

  30×6×7=30×(□×□)125×8×40=(□×□)×□

运算定律教案9

  教学目标

  1.引导学生探索和理解加法交换律、结合律,能运用运算定律进行一些简便计算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:加法运算的交换律、结合律的学习。及其在连加计算中的应用。

  教学难点:加法运算的交换律、结合律计算中的应用。

  教学过程

  第一课时

  一、引入新课

  大家都会骑自行车吗?骑自行车不只会帮助我们节省在路上的时间,还是一项非常时尚的运动,既可以锻炼身体,还可以欣赏沿路的风景。现在我们就一起跟着李叔叔一起去骑车旅行吧。相信在这个过程中,我们会学到不少新知识。

  二、新课学习

  1.加法交换律

  李叔叔的车上装有里程表。我们来看看他第一天的骑了多远吧!

  学生自己完成,教师巡视,找出复合交换律的两位同学进行汇报,或者由学生板演。教师引导学生比较两种算法有什么不同之处。得出

  40+56=56+40。

  这样的算式是不是很有趣啊?你能再举出这样的例子吗?

  由学生汇报交流,教师板演出几个典型的,提问:仔细观察这些算式,你发现了什么?

  加法交换律是非常巧妙的,可以为我们的计算提供方便。想一想,你能用什么方法来表达一下加法交换律吗?怎么样才能让我们更容易记住这个规律呢?请大家动脑想一想,动手写一写、画一画。

  学生汇报,鼓励学生提出的各种不同的表示方法。引导学生了解文字、字母、符号三种表示方法。强调字母表示法是常用的表示方法,要求学生掌握。

  a+b=b+a

  三、巩固练习

  练一练

  (1)59+()=()+36(2)18+25=()+()

  (3)59+()=()+36(4)59+()=()+36

  四、课堂总结

  加法交换律就是说两个加数交换位置,和不变。大家已经会应用了,真不错。说一说你今天有什么收获。

  第二课时

  一、引入新课

  李叔叔第三天的旅程已经结束了,你有什么问题想问问李叔叔吗?

  让学生自己回答。

  李叔叔详细的`记录了他的行程,我们来一起看看他的记录手册,肯定能回答大家刚才提出的问题。

  二、新课学习

  加法结合律

  李叔叔想知道这三天一共骑了多少千米,大家能帮他解决这个问题吗?谁来说一说用什么法计算?怎么列式?

  88+104+96

  看来用这样的一个连加的算式就能解决李叔叔的这个问题。你能用自己的方法来完成这道加法题吗?

  让学生自己完成,然后汇报。教师巡视

  教案《人教版四年级数学下册《加法运算定律》教案》,来自网!http://

  后,找出复合结合律的几个学生汇报,或者投影展示。观察这几位同学的做法,你有什么发现?

  (88+104)+96=88+(104+96)

  你还能举出这样的例子吗?写一写。

  观察这些算式,你发现了什么规律?

  加法结合律也可以为我们的计算提供方便。想一想,你能用什么方法来表达一下加法结合律吗?怎么样才能让我们更容易记住这个规律呢?请大家动脑想一想,动手写一写、画一画。

  学生汇报,鼓励学生提出的各种不同的表示方法。引导学生了解文字、字母、符号三种表示方法。强调字母表示法是常用的表示方法,要求学生掌握。

  三、巩固练习

  练一练

  (1)256+99+44=(□+□)+□

  (2)125+32+168=□+(□+□)

  四、课堂总结

  今天我们学习了加法结合律。

  第三课时

  一、引入新课

  复习引入

  我们来复习一下加法的运算律,你还记得哪个?

  加法交换律:两个加数交换位置,和不变。用字母表示是:a+b=b+a。

  加法结合律:先把两个数相加,或者先把后两个数相加,和不变。用字母表示是:(a+b)+c=a+(b+c)

  二、新课学习

  接下来我们来看看李叔叔后四天的行程计划吧。

  请你想一想,怎么解决这个问题,然后写下来。教师巡视,个别辅导。

  然后让学生汇报不同的计算方法。

  然后师生共同完成。探讨:你运用了那些运算定律来完成这个计算?

  三、巩固练习

  练一练:

  (1)425+14+186

  (2)75+168+25

  (3)245+180+20+155

  (4)67+25+33+75

  四、课堂总结

  学习了加法交换律和加法结合律的时候,会使我们的计算变得简便。

运算定律教案10

  教学目标

  1、理解小数四则混合运算的顺序与整数相同,整数乘法运算定律可以推广到小数,能应用运算定律进行简便计算。

  2、经历小数乘法的运算定律的推广与应用过程,体验迁移类推的学习方法。

  3、在学习活动中,感受数学知识之间的密切联系,体验数学知识的应用价值。

  教学重点

  整数乘法运算定律推广到小数。

  教学难点

  运用乘法定律进行简便计算。

  教学过程

  一、激活旧知,做好铺垫

  1、师:今天老师带来了几道相似却不同的算式。想请同学们先计算再对比观察,之后再与同桌交流发现了什么。什么变什么不变?

  出示:8×5×4 5×(24+36);0.8×0.5×0.4 0.5×(2.4+3.6)

  2、学生独立计算.对比观察,全班交流

  预设:第一组算式是整数乘法,第二组算式是小数乘法。计算每一组的第一个算式时都是从左往右算,或者可以用乘法交换律进行简便运算,计算每一组的第二个算式时都是先算小括号内的,或者可以用乘法分配律进行简便运算。

  3、师:小数四则混合运算的顺序和整数是一样的,在刚才的计算中同学们很自觉得将整数乘法计算中的知识迁移过来。在数学知识中,知识点不断发生改变,但其中的法则或方法却是一直不变。

  二、类推迁移,发现规律

  1、师:在刚才计算中我们不仅发现整数四则运算的顺序在小数中同样适用,还都联想到将整数乘法的运算定律用到小数乘法中。整数乘法的运算定律有哪些?(相机板书)是不是整数乘法运算定律在小数中都适用呢?

  2、指名交流:整数乘法运算定律能不能推广到小数乘法的看法

  预设:有的同学说能,有的同学说不能

  3.师:大家都提出了自己对这个问题的猜想,那这个猜想是否成立,我们还要进一步验证。观察下列算式,与同桌交流你的发现。

  (1)出示三组算式:0.7×1.2○1.2×0.7

  (0.8×0.5)×0.4○0.8×(0.5×0.4)

  (2.4+3.6)×0.5○2.4×0.5+3.6×0.5

  (2)学生独立计算,进行验证

  (3)全班交流:(预设)0.7×1.2=1.2×0.7是使用了乘法交换律;(0.8×0.5)×0.4=0.8×(0.5×0.4)是使用了乘法结合律;(2.4+3.6)×0.5=2.4×0.5+3.6×0.5是使用了乘法分配律

  (4)师:谁还能举出具有上面规律的算式?能不能找到一个反例?通过验证,你得到了什么结论?

  预设:没有办法举出来反例,通过验证我得出“整数乘法的交换律.结合律和分配律,对于小数乘法同样适用”的结论

  (5)师:像具有规律的算式还有很多很多,同时我们没有办法找到一个反例,那就证明这个规律是成立的。通过刚才的提出假设.举例验证.归纳总结,我们可以发现“整数乘法的交换律.结合律和分配律,对于小数乘法同样适用”。

  三、运用规律,深化理解

  1、出示例题:0.25×4.78×4

  (1)师:你能仿照整数乘法中类似的题目的简算方法来计算这道题吗?试着做看看。

  (2)学生独立计算,指名上台板演

  预设:0.25×4.78×4

  =0.25×4×4.78

  =1×4.78

  =4.78

  (3)师:在计算这道题时,你运用了哪些乘法运算定律?你是根据什么来选择运算定律的`?

  预设:运用了乘法交换律,将“4.78”与“4”交换了位置进行简便计算。题中有0.25和4这两个比较特殊的数,0.25×4=1。先利用乘法交换律把这两个数相乘,得到1后,再用1×4.78,就很容易算出它们的结果了。

  (4)师小结:在进行简便运算时,首先要观察算式整体结构,再观察其中的数据特点。要“想”它能否与4或8相乘,使它能先乘出1或整十.整百.整千的积后再和其他因数相乘,这样计算起来就要简便得多。

  2、出示例题:0.65×202

  (1)学生独立计算,指名上台板演

  预设:0.65×202

  =0.65×200+0.62×2

  =130+1.3

  =131.3

  (2)师:在计算这道题时,你运用了哪些乘法运算定律?你是根据什么来选择运算定律的?

  预设:运用了“乘法分配律”进行简便运算。先“看”题中比较特殊的数是200,它的特殊性表现在它是由200和2组成的,可以写成200+2;再“想”200和2分别与0.65相乘,可以先口算2×0.65结果,200×0.65的结果就可以直接运用积的变化规律直接计算。最后用乘法分配律计算。

  (3)师:那“4.78×9.9”怎样计算?

  预设:首先将9.9写成10-0.1,接着将10和0.1分别与9.9相乘,最后用乘法分配律计算

  (4)师小结:在两个因数中,有一个因数接近整十.整百.整千……就把这个因数拆成整十数.整百数或整千数加一位数的形式或拆成整十.整百.整千数减一位数的形式,然后运用乘法的分配律计算。

  3、出示练习:16×1.25

  (1)学生讨论:用多种方法计算这道题

  (2)学生独立计算,交流计算方法:

  4、师:在运用乘法运算定律进行简算时,我们要先观察算式的结构特点和数据的特点,然后根据所发现的特点选定用哪条乘法运算定律。

  四、课堂小结,完善认知

  1、师:通过本节课的学习,你有怎样的收获?

  2、师:本节课我们通过提出假设.举例验证.归纳总结,将整数乘法的运算定律迁移到了小数乘法的运算定律当中。还知道在进行简便计算时,要关注算式的整体结构特点及数据的特点。在以后的学习当中,我们还会学习分数的四则运算,那这些运算定律还能不能推广到分数呢?这个问题就留给同学们课后思考。

运算定律教案11

  教学内容

  人教版小学数学四年级下册P27——32。

  教材分析

  教材通过李叔叔骑自行车外出旅游所行的路程引出问题,先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。

  教学目标

  知识与能力

  使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  过程与方法

  使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。

  情感与态度

  使学生在教学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重难点

  重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  难点:使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。

  教学准备

  多媒体课件

  教学过程

  课前小游戏:比眼力

  一、创设情境,提出问题。

  1.谈话导入,揭示课题。

  师:孩子们,谁能说一说今天我们要学习什么内容?(加法运算定律)

  你是怎么知道的?(看大屏幕上写的)

  非常好,你是个会观察的孩子。

  师:在四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。加法的运算定律是什么呢?这节课我们一起来研究加法运算定律。(板书课题——加法运算定律)

  2.创设情境,提出问题。

  (1)师:漫长的暑假好多人都外出旅游放松心情去了,当然李叔叔也不例外,看他是怎么去的?(出示幻灯片)

  生:骑自行车。

  师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?

  (2)学生汇报自己了解的信息。

  (3)根据你了解到的信息你能提出什么问题?(学生提问)

  (4)学出问题:李叔叔今天一共骑了多少千米?

  二、合作探究,解决问题。

  (一)探究加法交换律

  1.列式计算

  师:要解决这个问题我们应该怎么算?请自己列式计算然后汇报。(40+56和56+40,如果没有学生说出56+40这种算法,教师要引导他们这样列出)

  2.两种算法不同,为什么结果是一样的?(因为都表示的是上午和下午的路程和,所以结果是一样的。)

  3.既然这两个算式的结果是一样的,我们可以在里填上什么符号?(“=”号)

  4.像这样的算式,你们还能举出例子来吗?

  (学生举例)

  5.仔细观察,这些算式有什么特点?

  (两个加数没有变,只是它俩的位置交换了,和不变。)

  6.这样的算式我们能写完吗?你认为你举得例子左右两边一定相等吗?为什么?(因为无论它俩的位置怎样,都是算它们的和是多少,所以左右两边相等。)

  7.揭示规律

  (1)同学们,像刚才我们举得那些例子中包含的规律,就是加法的交换律,你能用自己的话说一说什么是加法的交换律吗?

  (学生总结)

  (2)小结:两个加数交换位置,和不变,这叫做加法的交换律。(板书)

  8.既然像这样的算式写不完,你们能想个办法用一个算式概括加法的交换律吗?试一试。

  (学生尝试)

  9.展示学生的.方法。

  10.确定用字母表示加法交换律,并板书。

  师:由于字母表示比较简便,所以通常我们用a、b表示任意两个加数,所以加法交换律用字母表示为:a+b=b+a。(板书)

  11.对口令

  师:83+17=生:等于17+83

  57+44 a+b 100+60 18+75 35+65 85+768

  12.介绍加法交换律在加法验算中的应用。

  (二)探究加法结合律

  1.刚才提到李叔叔要旅行七天,下面是李叔叔前三天经过的路程,我们来了解一下。(出示情境图二)

  2.学生观察,说说了解到的信息。

  3.出示问题:你知道李叔叔三天一共骑了多少千米吗?请自己先算一算。

  4.展示学生的算法。

  (88+104)+96 88+(104+96)

  哪种算法简单,为什么?

  5.我们来理一理这两种算法。

  师:算法一,先算前两天骑的路程,再加第三天的路程。

  算法二,先算后两天骑的路程,再加第一天的路程。这种方法简单。

  师:算法不一样为什么结果一样?(因为它们都算的是三天的路程和)

  6.既然结果一样,我们可以用什么符号把这两的算式连接起来?(等号)

  7.比较下面两组算式

  68+152+48 68+(152+48)

  (225+175)+67 225+(175+67)

  8.让学生照样子写出几组算式,并展示。

  9.观察这些算式,你有什么发现?

  生:三个数相加,先把前两个数相加,或者想把后两个数相加,和不变。

  10.揭示加法结合律。

  (1)师:像刚才我们又发现的加法中的这一规律,叫做加法结合律。你能用自己的话说一说什么是加法结合律吗?

  (2)小结:三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。(板书)

  11.试着用符号表示加法结合律。

  师:加法结合律用字母表示为:(a+b)+c=a+(b+c),a、b、c分别表示任意三个加数。

  三、巩固练习,检测反馈。

  1.填一填:

  (1)两个加数交换( ),和不变,这叫做加法( )。

  (2)三个数相加,先把( ),或者先把( ),和不变,这叫做加法( )。

  (3)加法交换律用字母表示:

  a+b=________。

  (4)加法结合律用字母表示:

  (a+b)+c= ________。

  2.应用学过的定律在下面( )中填上适当的数。

  (1)29+17=( )+29

  (2)120+( )=35+( )

  (3)138+(62+365)=( + )+365

  (4)( +358)+ ( )= 198+( +42)

  3.连一连,再说一说每组连线的依据是什么?

  63+325 64+(19+81)

  87+32+68 325+63

  (64+19)+81 87+(32+68)

  36+78+64 78+(36+64)

  4.比一比,那组算得快。

  (1)(195+32)+68 (2) 195+(32+68)

  (205+59)+241 205+(59+241)

  486+78+14 78 +(486+14)

  师:利用加法运算定律可以使计算简便。

  四.合作总结,整理内化。

  1.本节课你学会了什么?

  2.请用是什么、为什么和干什么把本节课学到的知识对你的同桌说一说。

  师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!

  板书设计

  加法运算定律

  加法交换律a+b=b+a

  加法结合律(a+b)+c=a+(b+c)

运算定律教案12

  教学目标

  1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题.

  2.使学生理解和掌握乘法交换律,并能运用它进行验算.

  3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力.

  教学重点:

  使学生理解并运用乘法的意义及其运算定律——交换律.

  教学难点:

  乘法交换律的应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1.口算:14×3 50×30 2×50 15×4 15+15+15+15

  4+4+4+4 30×12 60× 40 4×25 9+9+9+9+9

  2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)

  二、探求新知

  1.教学乘法意义:

  (1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载

  引导学生分析:横着看或竖着看,每排放几个,一共有几排?

  教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

  用加法计算:5+5+5+5+5+5=30(个)

  或6+6+6+6+6=30(个) (教师板书)

  教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

  用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

  (2)对比例1中的两种方法,哪种方法简便?

  引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.

  教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

  教师补充说明:求几个相同加数和的简便运算叫做乘法.演示课件“乘法的意义” 下载

  相乘的两个数叫做因数,乘得的数叫积.

  (3)教学1和0的乘法特点:

  想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的?

  启发学生举例:3×1=3 1×1=1 3×0=0 0×0=0 (教师板书)

  引导学生观察:这几个算式都和哪几个数有关系?

  教师归纳:一个数和1相乘,仍得原数.

  一个数和0相乘,仍得0.

  (4) 反馈练习:(投影出示)

  ①下列算式能否改成乘法算式,为什么?

  120+120+120+120 80+90+70 15+15+15+20

  ②判断:

  求几个加数和的简便运算叫乘法.( )

  求几个相同加数和的运算叫乘法.( )

  2.教学乘法交换律:

  (1) 出示例2 演示课件“乘法交换律”出示例2

  观察下面每组的两个算式,它们有什么样的关系?

  12×5○5×12 400×20○20×400

  引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等.

  学生讨论:是不是所有像这样的式子都具有这些特点呢?

  引导学生互相讨论,自己举例说明,教师巡视.

  启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变.

  教师指出:这叫做乘法的交换律.

  反馈练习:

  ①下列各式运用了乘法的交换律,对吗?为什么?

  11×9=9×100 12×18=2×18 a+b=b+a

  ②课本第60页“做一做”第1题.

  根据运算定律在下面的□里填上适当的.数.

  12×32=32×□ 39×41=□×□

  (2) 教师提问:

  加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a) (教师板书)

  教师指出:这里a、b表示大于0或等于0的整数.

  教师提问:以前学习哪些知识时用了乘法交换律.(笔算乘法验算时用到了乘法交换律.)

  (3)练习:课本第60页的“做一做”第2题.

  计算下面各题,用交换因数的位置的方法进行验算.

  32×25 105×424

  三、巩固发展

  四、课堂小结

  教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

  五、布置作业

  教材62页1、2题

  1题、应用乘法意义说明下面各题为什么要用乘法计算?

  (1) 一幢宿舍楼有6个单元,每个单元可以住15户.一共可以住多少户?

  (2) 一头牛重500千克,一头大象的重量是这头牛的10倍.这头大象有多重?

  2题、根据运算性质定律在下面□里填上适当的数.

  15×16=16×□ 25×7×4=□×□×7

  (60×25)×□=60×(□×8) (125×□)×□=125×(9×14)

运算定律教案13

  一、教学目标

  1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  二、编排特点

  1.有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。

  将有关运算定律的知识集中于一个单元,加以系统编排,便于学生感悟知识之间的内在联系与区别,有利于学生通过系统学习,构建比较完整的知识结构。

  2.从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。

  本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。同时,教材在练习中还安排了一些实际问题,让学生借助解决实际问题,进一步体会和认识运算定律。

  3.重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。

  本单元的第三小节,改变了以往简便计算以介绍算法技巧为主的倾向,着力引导学生将简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。这对发展学生思维的灵活性,提高学生分析问题、解决问题的能力,都有一定的促进作用。

  三、具体编排

  1.加法运算定律。

  (1)主题图。

  旅行途中记录行程的情景。考虑到学生对自行车上的记录仪表比较陌生,所以画了一个仪表表面的放大图,并让小精灵做提示性介绍。

  (2)例1。

  在主题图的基础上提出了要解决的问题。教学时可以让学生自己解答并交流;并让学生用自己喜欢的方式表示加法交换律。

  (3)例2。

  加法结合律。理解了题意,并搞清了条件和问题之后,可以放手让学生自己列出算式计算。接着,还可让学生观察比较教材提供的另两组算式,当然也可以让学生自己编出像例2这样的例子,再观察、比较。

  (4)例3。

  让学生将前面所学的两条加法运算定律,综合运用于解决实际问题的计算中。

  2.乘法运算定律。

  (1)主题图。

  教学时可以先让学生看主题图,说说图中告诉了我们哪些信息,学生可以按自己看到的说,也可以把图中的两段说明文字复述一遍。再根据这些信息引导学生发现可解决的一些问题。

  (2)例1。

  让学生自己发现乘法交换律。启发学生用自己喜欢的方式表示乘法交换律。进一步,可让学生在主题图中,找出可用乘法交换律解决的`其他问题,并列出算式。

  (3)例2。

  从解决这个问题的两种算法中,得到乘法结合律的一个实例。引导学生观察、比较、概括得出乘法结合律。小结时,让学生进一步思考小精灵提出的问题:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?要引导学生通过观察、比较明确:交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,即可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。在这一活动中,应允许学生用自己的话,叙述自己的发现。

  (4)例3。

  通过比较、概括得出乘法分配律。小结时,教师有必要指出乘法分配律与乘法交换律、结合律的最大区别,在于乘法分配律是乘、加这两种运算之间的一个规律,而乘法交换律、结合律只是乘法一种运算内部的规律。

  3.简便计算

  (1)例1。

  讨论连续减去两个数的几种常用算法。教材展示了三种算法,同时以小精灵提问的方式给出两个问题:他们都是怎样计算的?你喜欢哪种方法?显然,前一个问题是让学生思考、理解三种算法的计算过程和其中的算理;后一个问题是引导学生比较各种方法的特点,思考它们的适用范围。

  (2)例2。

  画面是书店的一角,题中包含两个需要综合应用加减计算的实践问题,而且解决问题的策略具有较大的灵活性。

  (3)例3。

  讨论可用连除计算解答的实际问题。教材给出了两种解法,引导学生思考两种解法分别先算什么,再算什么。然后,通过小精灵的提示比较两种算法,说出其中的运算规律。

  (4)例4。

  以王老师买羽毛球拍和羽毛球为题材,提出了三个问题。整个例题具有一定的综合性。例4的三个问题,可以一次给出,或依次给出,也可以先出示插图和四个已知条件,让学生说说一打装是什么意思,然后由学生自己提出问题。

  (5)例5。

  教材介绍了按月计算、按周计算的两种思路,以及相应的列式计算过程。在按月计算的过程中,运用了乘法分配律。然后通过小精灵,鼓励学生提出自己的算法,和同学交流。最后让学生根据例题的内容,继续提出其他问题,作为练习题。

  四、教学建议

  1.充分利用学生已有的感性认识,促进学习的迁移。

  对于小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为规律性的理性认识。

  2.加强数学与现实世界的联系,促进知识的理解与应用。

  如前分析,本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材的这一意图,用好教材,借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。

  3.注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

  对于小学生来说,运算定律的运用具有一定的灵活性,对数学能力的要求较高,这是问题的一个方面。另一方面,运算定律的运用也为培养和发展学生思维的灵活性,提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,教师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发;当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。

运算定律教案14

  第一课时

  复习内容:

  四则运算、运算定律与简便计算(一)

  教学目标:

  1、通过练习,使学生巩固带小括号四则混合运算式题的运算顺序,并能正确计算带小括号.

  2、复习运用加法和乘法的运算定律和一些简算方法进行简便运算。

  3、培养学生根据具体情况,选择算法的意识和能力,发展思维的灵活性。

  教学过程:

  一、口算

  2500÷500 0×250 100÷25 58÷29 250×1 9×15 33÷3+1 6×7+5

  1、说出下面各题的运算顺序(同桌互说再集体反馈 )

  47×28-735÷49+7 47×28-(735÷49+7) 47×(28-735÷49)+7

  2、说一说四则运算的计算顺序是什么?

  二、组织练习

  1、改错先说说错在哪里,为什么会错?该如何订正?

  235+5×(200-100÷25) 5×(12-12+12+12)

  =240×(100÷25) =5×(0+12)

  =240×4 =5×12

  =960 =60

  2、说说运算顺序

  4300-(224÷7×8) (41-16)÷(89-64) (375+31-16)×(89-64)

  3、小结:四则运算顺序

  4、小组讨论:下面四张扑克牌上的`点数,经过怎样的运算,才能得到 24呢?你能想出几种方法?

  6点、4点、2点、3点

  三、复习加法、乘法的运算定律

  1、引导学生用文字总结并用字母归纳(板书:用字母表示各个运算定律)

  2、课堂练习

  (1)计算并运用运算定律验算

  578+3864= 178×26=

  (2)简算(并用字母表示所用的运算定律)

  25×12 514-389-111 87×201 125×88

  66×99 25×47×40 98×27

  23×37+27×37 28×3+28×5+2×28

  (3)应用题(让学生独立完成,请个别同学上台板演,全班订正,重点说说运用什么运算定律,用字母怎么表示。)

  A、一个水池的长是98米,宽是27米,水池的面积是多少平方米?

  B、班上共有男生23人,女生27人,每人交课本费37元,一共要交多少钱?

  四、总结

  五、作业:计算下面各题,怎样计算简便就怎样算

  75×99+75 103×85 125×72 86×201

  41×25-25 99×36 25×32×40 47×63+37×47

  第二课时

  复习内容:

  四则运算、运算定律与简便计算(二)

  教复习目标:

  1、使学生进一步掌握四则运算的运算顺序和乘法分配律,能正确计算三步混合运算式题,并能运用运算律进行简便计算;

  2、进一步提高应用数学知识和方法解决实际问题的能力,能灵活应用简便方法进行简便计算。

  3、通过知识的梳理,使学生掌握学习方法,增强学好数学的信心。

  教学重点:

  理请运算顺序及简便计算的方法。

  教学难点:

  对一些易混题能准确辨析并灵活应用所学的简便方法进行计算。

  教学准备:

  小卡片,小黑板

  复习过程:

  一、复习混合运算:

  1、过关箱抽2题,让学生独立完成

  2、分类归纳运算顺序

  没有括号,先乘除后加减

  有小括号,先算小括号

  3、拓展箱抽1题(拓展在哪一个方面?)

  4、独立完成( 给分步式整理成综合式)

  20×5=100 70-30=40 477-27=450

  150-100=50 15×40=600 450÷9=50

  50+25=7527+600=627 4500÷50=90

  5、 按照指定的运算顺序,给下面的式子添上括号。

  (1)先算加,再算除,最后算乘:360÷10+2×5

  (2)先算除,再算加,最后算乘:360÷10+2×5

  (3)先算加,再算乘,最后算除:360÷10+2×5

  二、复习简便计算:

  1、过关箱抽2题,让学生独立完成

  2、分类交流,复习各种运算律和简便方法,以及字母表示法。

  3、归纳板书:

  加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

  除法的性质:a÷b÷c=a÷(b×c) 减 法 性 质:a-b-c=a-(b+c)

  4、分组练习:比较乘法结合律和乘法分配律,加深对乘法结合律和乘法分配律的理解。

  (40×4)×25 25×28 25×28

  (40+4)×25 =25×(4×7) =25×(20+8)

  =(25×4)×7 =25×20+25×8

  =100×7 =500+200

  =700 =700

  5、拓展箱抽1题,让学生独立完成

  6、交流反馈

  98×18+36 37×56+43×37+37

  45+54+63+72+81 321×4+963×3-642×2

  三、解决实际问题:

  1、出示例题:校园里有38棵松树,杨树的棵树是松树的2倍,柏树的棵树比杨树的棵数少24棵。校园里有柏树多少棵?

  (1)观察图意,学生独立解决书上的问题

  (2)讨论:你还能提出什么问题?

  2、出示例题:学校舞蹈队购买了23套服装,每件上衣84元,每条裤子66元。学校舞蹈队买服装共花多少元?(用两种方法解答)

  (1)学生读题并独立列式解答

  (2)学生交流说说思考的过程。

  四、课堂小结

  五、作业:简便计算

  298+135+102 372-72-28 88×25 56×125

  125×13×8 99×23+23 270000÷(125×3) 25×32×125

运算定律教案15

  教学目标:

  1、使学生能够运用运算定律和性质进行正确、合理、灵活的计算。

  2、培养学生的辨析能力和良好审题习惯,提高学生计算能力。

  3、使学生在学习中体会计算的乐趣,不断培养学生学习数学的兴趣。

  教学重点:

  培养学生审题的良好学习习惯及正确的运用定律性质进行计算的能力。

  教学难点:

  灵活地运用运算定律和性质进行计算。

  教学过程:

  一、导入新课

  1、观察3/10、7.4、8、125、5.4、7/10这六个数,你有什么发现?(预设:如学生说出下面的①,则教师就继续说②;如学生直接说②,则教师就不再说①)

  ①这些数是整数、小数和分数。(评价:观察得很仔细)

  ②从计算的角度考虑这些数可以干什么?(凑整)

  2、请你根据这六个数编出三道口算题。

  7/10+3/10=7.4-5.4=8125=

  3、对三道口算题再加工,请你继续计算。

  3/10+7/1020=7.4-5.40.9=248125=

  你想说点什么?(预设:不能为了凑整,而不顾运算顺序,应该按运算顺序做。)

  这些题的运算顺序是什么?

  (设计意图:不能为了凑整,而不顾运算顺序,为本节课的学习进行铺垫。)

  二、进行复习

  1、下面我们进行一次计算比赛,时间三分钟,看谁做得又对又多。可以不按题号顺序,有选择地做。(课前下发答题卡。)

  脱式计算下列各题:

  (设计意图:培养学生具有简算的意识,及审题的习惯)

  2、三分钟到!谁来说一说,你选择的是哪些题目?其他同学呢?

  3、思考:你们为什么选择这些题?(预设:学生如果回答能简算,则教师接学生的话说:能直接简算。如学生能说出直接简算最好)

  4、我没让你们简算,你们怎么知道这些题能够直接简算的?(预设:需要观察数的特征,符号)简算的依据是什么?(小组讨论)

  板书:观察数特征符号

  (设计意图:引起学生的思考,使学生认识到要想判断一道题能否简算,要观察数字的特征及运算符号,运用定律、性质通过凑整达到简算的目的。)

  5、追问:是不是数字只要能凑整就能简算呢?不能简算,根据什么?能简算根据什么?

  (设计意图:进一步强化不能简算的依据是运算顺序、简算的依据是定律和性质。)

  6、现在研究简算的题目,打开书79页,自己先独立填写,填完后再小组交流。

  名称用字母表示举例

  7、集体订正。

  8、谁来根据字母式子,说说每个运算定律是什么意思?

  师:在进行混合运算时,应用上面的运算定律,常常可以使运算过程变得简便。

  (引导学生观察例能不能简算,它的数据和运算符号有什么特征?简算时运用了哪个定律?)

  学生观察、思考后独立做出,然后集体反馈。

  41/2+41/2

  =4(1/2+1/2)运用了乘法分配律

  =41

  =4

  三、课堂练习:

  1、我当小法官(正确的计算画,错的画)

  (1)2532125=(254)+(8125)()

  (2)36101-36=36(101-1)()

  (3)2599=25100-25()

  (4)510-35+65=510-(35+65)()

  (5)45(20+2)=4520+2()

  (6)432-(232-68)=432-232-68()

  2、选一选:

  40(8+25)=408+4025,这是用了(),使计算简便。

  A.乘法交换律

  B.乘法结合律

  C.乘法分配律

  选一选:

  61+72+39+28=(61+39)+(72+28)运用了()。

  A.加法交换律

  B.加法结合律

  C.加法交换律和加法结合律

  选一选:

  56(57)=()

  A.5657

  B.5675C.5657

  3、动动脑筋,你能用自己不同的方法进行简便计算吗?试试看

  (1)12588

  (2)17045+55017

  (1)12588

  方法一:12588

  =125(80+8)

  =12580+1258

  =10000+1000

  =11000

  方法二:12588

  =125(811)

  =(1258)11

  =100011

  =11000

  (2)17045+55017

  方法一:17045+55017

  =171045+55017

  =17(1045)+55017

  =17450+55017

  =17(450+550)

  =171000

  =17000

  方法二:17045+55017

  =17045+551017

  =17045+55(1017)

  =17045+55170

  =170(45+55)

  =170100

  =17000

  4、计算下面各题,能简便的要简便。

  8.5-(5.6+4.8)1.3

  0.9899

  51/32/52/15

  12(1/4-1/6+3/4)

  4.05-(2.05-0.7)

  3212525

  14.86.3-6.36.5+8.33.7

  16002.5

  2.512.548

  (21-7/8)1/7

  小结:应用运算定律,可以根据算式里数的特点,使一些运算简便。有的'算式可能存在几种不同的算法,所以,在运算前要认真审题,看清算式中各个数的特点,选用一种比较简便的算法,又对又快地算出这些算式的结果。

  四、总结:

  这节课复习了什么?通过复习你有哪些收获?

  今天你还想说点什么?

  (预设:审题重要,观察特征、符号,依据定律、性质,凑整达到简算目的。)

  今天的复习对于以前的学习,你有什么新的认识或想法?

  四、板书设计:

  观察数特征符号

  计算下面各题,能简便的要简便。

  (1)8.5-(5.6+4.8)1.3

  (2)0.9899

  (3)51/32/52/15

  (4)12(1/4-1/6+3/4)

  (5)4.05-(2.05-0.7)

  (6)3212525

  (7)14.86.3-6.36.5+8.33.7

  (8)16002.5

  (9)2.512.548

  (10)21-7/8)1/7

【运算定律教案】相关文章:

加法运算定律 教案12-17

乘法运算定律教案设计11-04

乘法运算定律数学教案12-17

乘法运算定律数学教案01-21

《运算定律》教学反思04-06

运算定律教学反思11-05

乘法运算定律的教学设想04-25

《加法的运算定律》教学反思10-01

《运算定律》教学反思(二)10-30