四年级《轴对称图形》教案

时间:2021-05-09 17:44:12 其它教案 我要投稿

四年级《轴对称图形》教案范文(通用5篇)

  作为一名无私奉献的老师,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?下面是小编精心整理的四年级《轴对称图形》教案范文(通用5篇),欢迎大家分享。

四年级《轴对称图形》教案范文(通用5篇)

  四年级《轴对称图形》教案1

  【教学目标】

  1、知识与能力

  (1)理解轴对称图形,两个图形关于某直线对称的概念。

  (2)了解轴对称图形与两个图形关于某直线对称的区别和联系。

  (3)了解轴对称的性质。

  2、过程与方法

  通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。

  3、情感、态度与价值观

  通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

  【教学重点】

  轴对称图形和两个图形关于某直线对称的概念以及区别和联系。

  【教学难点】

  轴对称的性质。

  【教学方法】创设情境-主体探究-合作交流-应用提高.

  【教学用具】多媒体课件、直尺、剪刀和彩纸等

  【教学过程】

  一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形

  我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物。

  问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片)。

  (1)这些图形有什么共同的特征?

  对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?

  (2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?

  (3)你能利用手中的彩纸,剪出具有对称特征的图案吗?

  二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念

  师生互动操作设计:

  教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.

  1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.

  归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.

  2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?

  学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.

  在学生交流的基础上,引导学生对轴对称的概念进行归纳.

  把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

  3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:

  轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.

  轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.

  三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念

  1、如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?

  学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合

  于是有 AP=PA′、∠MPA=∠MPA′=90°

  对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.

  2、鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”

  3、进而引导学生进行归纳:

  轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.

  类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.

  四、师生合作,应用提高,拓展创新

  1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等

  先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?

  学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴。并将学生交流的结果展示在黑板上,师生交流心得和方法。

  对称轴是任何一对对应点所连线段的垂直平分线。为下一课学习垂直平分线的画法打下基础。

  2.利用以前认识过的一些简单的几何图形,如三角形,正方形,矩形,平行四边形,梯形等,以这些图形的任意一条边所在直线做为对称轴,找出对称点,自己设计和创作轴对图形或是成轴对称的两个图,并将学生的成果展示在黑板上。

  五、归纳小结

  1.这节课你学到了什么?

  (1).轴对称、轴对称图形的概念;;

  (2).轴对称和轴对称图形的区别和联系

  (3).线段垂直平分线的概念;

  (4).轴对称的性质。

  2.你还学到了什么?还想学习什么?

  六、布置作业、下课

  作业:收集和整理生活中有关轴对称的图片,课余时间进行交流,发现生活中对称的美。

  【教学板书】

  12.1轴对称

  1.轴对称图形

  (1)沿直线对折

  (2)两侧能够完全重合

  2.轴对称

  3.垂直平分线

  (1)过线段中点

  (2)垂直于这条线段

  4.轴对称的性质

  对称轴是任何一对对应点所连线段的垂直平分线

  四年级《轴对称图形》教案2

  教学内容

  义务教育课程标准实验教材数学第六册56—61页内容

  教学资源分析:

  本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。

  教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知 “这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。教材这样安排的主要目的是帮助学生感受生活中的对称现象。接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。

  教学目标:

  1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。

  2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

  教学重点

  使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  教学难点:

  引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。

  教学准备

  多媒体课件一套,每组有不同的图形一套,想想做做2所要求的字母一套,小剪刀,彩纸,水彩画颜料,钉子板等等

  一、猜一猜——激趣导入

  师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?

  (多媒体出示:枫叶、蜻蜓、天平等物体的一半,让学生猜一猜,猜中就出示物体的全幅图)

  师:是啊,这些物体可真有趣,你知道它们有趣在哪里吗?

  (让学生自由说)

  小结:是的,它们可以分为两个完全相同的部分。

  设计意图:有趣的“猜一猜”游戏,不但激发了学生的好奇,而且让学生初步感受到:有些物体可以分为两个完全相同的部分,同时也为学生感知轴对称图形的特征作了铺垫。

  二、观察、操作——探究特征

  1、观察,初步感知

  师:老师还带来了一组物体的图片,请小朋友仔细观察这三个物体,你能发现它们共同特征的吗?

  (多媒体出示天安门、飞机、奖杯,让学生自由说一说)

  师:(小结)是的,这些物体都是对称的。

  师:在生活中你还见过那些物体也具有对称的特征吗?

  (自由说,全班交流)

  2、操作,体会特征

  师:如果把上面的物体画下来,我们可以得到下面的图形。

  (多媒体出示按天安门、飞机、奖杯的实物画下来的图形)

  我们小朋友手中也有一些这样的图形,请小朋友选一个,对折,然后跟同学说一说,你发现了什么?

  (选三人在实物投影上交流)

  师:这三个图形有什么共同的特征吗?(指名说)

  小结:是啊,它们对折后,折痕两边的`部分完全重合。像这样的图形,我们叫它轴对称图形!你能跟同桌说说什么是轴对称图形吗?(学生自由说后,多媒体出示轴对称图形的概念,齐读)

  3、识别,加深体验

  师:我们认识的一些图形娃娃今天也来到这里,请你仔细观察这些图形,找一找,它们中哪些也是轴对称图形呢?

  (请小组长拿出预先准备好的图形,组织大家讨论,不确定的可以动手折一折,然后全班交流。)

  师:请小组长把轴对称图形图形整理出来,分工让每一个小朋友动手折一折,这些轴对称图形有几种对折的方法?

  (指名一组在实物投影上交流)

  小结:要使对折后折痕两边的部分完全重合,等腰三角形、等腰梯形只有一种对折的方法。长方形有两种对折的方法,正方形有4种对折的方法,这个特殊的五边形有五种对折的方法,而圆有无数种对折的方法呢!不管是一种还是很多种对折方法,只要对折后折痕两边的部分能够完全重合,这图形就是轴对称图形。

  设计意图:在认识轴对称图形的特征时,教者安排了三个层次的教学环节:第一层次,让学生在丰富的实例中进行感知,第二层次让学生在充分的操作中感知,第三层次放手让学生进行独立的选择和判断。层层深入,有利于学生更好地认识轴对称图形。

  4、训练,巩固特征

  (1)完成想想做做1,实物投影出示图形

  师:这是我们生活中常看到的一些图形,你能判断出它们中哪些是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,并且用尺子画出一条虚线来表示你准备怎样对折,全部完成了,由小组长组织大家讨论,全班交流)

  (2)完成想想做做2,实物投影出示图形

  师:看来,小朋友已经能根据轴对称图形的特征识别出生活中的许多轴对称图形了。你们知道吗,我们学的英文字母,许多也是轴对称图形呢!你能找出这些字母中的轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,如果不确定,可以拿出相应的字母折一折,完成了跟同桌交流,全班交流)

  (3)完成想想做做5,实物投影出示图形

  师:轴对称图形真是随处可见,你们看,这些是什么?对,国旗是一个国家的象征。观察下面的国旗,你能找出哪些国家的国旗是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,完成了小组长组织大家讨论,全班交流)

  (4)完成想想做做3,实物投影出示图形

  师:我们认识了那么多的轴对称图形,你能自己画出一个轴对称图形吗?

  请小朋友画出下面每一个图形的另一半,使它成为一个轴对称图形!画的时候要动脑筋想一想,怎样画又快又好!

  (独立练习,全班交流)

  三、做一做——内化新知

  师:刚才我们看了、找了、画了轴对称图形,现在,让我们来做一个轴对称图形好吗?你可以用老师提供给你们的工具做,也可以自己想法做,比一比,哪一组的方法多,做出的图形美!

  (小组活动,完成后,请一组到实物投影上展示,相机点评)

  设计意图:放手让学生自己“做”轴对称图形,让学生展示自己的“作品”,不但可以让学生共享彼此的经验,而且可以使学生进一步积累感性认识,丰富学生对轴对称图形的体验。

  四、看一看——拓展延伸

  师:轴对称图形以其特有的对称美,给人们带来了一种和谐的美感,蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由的飞翔;我们的服装因为对称显得大方、典雅;古今中外,有许多著名的建筑也是对称的,让我们来看一看这些对称的建筑,感受它们的奇妙和美丽!

  (多媒体播放)

  师:生活中的对称现象还有很多很多,如果有兴趣,电脑课时,可以上网查阅。

  设计意图:数学因为其与生活的密切的联系,才能体现其生活的价值。让学生了解自然界、生活中的对称现象,可以进一步拓宽学生的知识视野,帮助学生体会“对称”的科学与美学价值!

  五、说一说——总结评价

  师:今天,我们学习了轴对称图形,你有什么收获吗?

  六、作业

  1、完成想想做做4、6

  2、收集一些轴对称图形的图片,最好是同一系列的,如:都是建筑的,或者都是交通标志的,在同学之间交流。

  四年级《轴对称图形》教案3

  一、教学目标:

  1、学生通过观察、操作,初步感知轴对称现象。

  2、让学生能在方格纸上画出简单的轴对称图形。

  3、通过观察操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美,增强学生学习的兴趣。

  二、教学重点:

  观察操作,初步感知轴对称现象。

  三、教学难点:

  结合实例感知轴对称现象。

  四、教具准备:

  实体标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形

  五、学具准备:

  图画纸、彩色纸、剪刀、实体标本、树叶若干片、胶水若干瓶、图形、画有等距离点子的方格纸。

  六、教学过程:

  观察激情:

  教师出示实物标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形。这些昆虫标本、树叶及图形好看吗?学生被这些鲜艳的色彩、美丽的图案吸引住了,异口同声地说:“很美,很漂亮”。“他们有什么特征?”生:“两边的形状是一样的”。“你在日常生活中还见过类似特征的东西吗?”同学们纷纷举手抢答,教师根据学生的回答(如飞机、剪刀、花瓶、黑板、镜子等)把这些图形贴或画在黑板上,接着说:“今天我们一起来认识、研究这类图形有什么共同的特征,通过你们自己动手、动脑学会一种新本领,并运用你学到的新本领设计出许多更多、更美的东西和图案,使我们的生活变的更丰富,美丽。”

  操作明理:

  剪剪、折折、发现特征。

  (1)指导学生把图画纸对折,如左图画出小树图。用剪刀沿图案剪下来,打开观察。

  (2)自己在用一张彩色指对折,在折好的一侧画己想画图形的一半,在剪下来打开(有的是一朵花、有的是一片树叶或各种装饰图案等)教师问:“这些图形虽各不相同,但它们有一个共同的特征,你能找出来吗?”(两半图形完全相同,大小一样)。

  (3)请学生把打开的两半、再沿折痕对折,你又发现了什么?(两半完全重合)

  (4)教师把印有下列图案的工作纸、分别发给每个小组,要求照刚才的方法对折观察,讨论这些图形也有什么特征。

  师生共同概括出:如果把一个图形沿着一条直线对折过来,在直线两边的图形完全重合,这种图形就是轴对称图形,折痕所在的这条直线是这个图形的对称轴。

  强化新知

  (1)研究讨论刚才同学们举例说出的图形(飞机、剪刀等)是不是轴对称图形?为什么?

  (2)教师出示下列图形,引导学生思考:

  那些图是轴对称图形?如何标准地找出它的对称轴。

  (把图形对折,如果两边能完全重合,便是轴对称图形,折痕就是这个图形的对称轴)

  引导发现,拓开思路。

  学生说一说生活中的那些东西是对称图形?你能找出蜻蜓、树叶、蝴蝶、北京脸谱的对称轴吗?使学生了解对称在生活中的应用性。

  运用提高、发展思维。

  (1)比一比谁用树叶拼成的轴对称图形最多、变化多。

  (2)下列图形是轴对称图形吗?是轴对称图形的请画出对称轴?

  (课本68页的做一做)

  (3)小猴不小心,把小花猫漂亮的照片污损了一部分,你能想办法帮帮小猴把污损的部分恢复原样吗?

  (4)比一比,谁在方格纸上设计的轴对称图形最美,(选佳作贴在黑板上,及时反馈、、欣赏)。

  课堂

  什么是轴对称图形,怎样准确地找出它的对称轴,这就是我们今天学到的新本领。轴对称图形真的很美丽,因此被广泛应用于服装、家具、交通工具、建筑等各方面的设计中。希能运用今天所学的知识把我们的环境装扮得更美丽。

  四年级《轴对称图形》教案4

  【学习目标】

  1、经历探索等腰三角形的轴对称性的过程,进一步理解轴对称的性质,发展空间观念;

  2、探索并了解等腰三角形的轴对称性及其相关性质;

  【主要问题】

  等腰三角形有哪些性质?等边三角形有哪些性质?

  一、基础知识回顾

  1、下列图形不一定是轴对称图形的是( )A、圆 B、长方形 C、线段 D、三角形

  2、以下结论正确的是( ).

  A.两个全等的图形一定成轴对称 B.两个全等的图形一定是轴对称图形

  C.两个成轴对称的图形一定全等 D.两个成轴对称的图形一定不全等

  3、轴对称图形对应点连线被 ,对应角对应线段都 .

  4、设A、B两点关于直线MN成轴对称,则 垂直平分 .

  5、三角形的周长等于 ,三角形的内角和是 。

  6、怎样的三角形是轴对称图形?答: 。

  7、如图(1), △ABC中,AB=AC,请在图中标出此三角形各边和各角的名称。

  二、新知识产生过程

  问题1:等腰三角形有哪些性质?请阅读课本P121

  8、等腰三角形是轴对称图形吗?如果是,请在图(2)中画出它的对称轴。

  你是如何找到等腰三角形的对称轴的? 。

  等腰三角形的对称轴是什么? 。

  A、顶角的平分线所在的直线 B。底角的平分线所在的直线

  C、底边上的高所在的直线 D。底边上的中线所在的直线

  9、当你把等腰三角形沿它的对称轴对折后,你能发现等腰三角形有哪些特征?

  把△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表(如图(3))

  (关键操作:对折、重合)

  10、归纳等腰三角形的性质:

  性质1

  性质2

  性质3

  11、根据等腰三角形性质定理,如图(4),在△ABC中, AB=AC时,

  (1) ∵AD⊥BC,∴∠_____ = ∠_____, = 。

  (2) ∵AD是中线,∴____⊥____ ,∠_____ =∠_____。

  (3) ∵AD是角平分线,∴____ ⊥____ ,_____ =_____。

  12、等腰三角形一个底角为70°,它的顶角为 。

  问题2:等边三角形的哪些性质?

  13、等腰三角形中有一种特殊的等腰三角形是 三角形,

  即 叫等边三角形。

  14、等边三角形是轴对称图形吗?

  如果是,请你在图(5)画出等边三角形的对称轴

  你能画出几条对称轴? 。

  15、当你把等边三角形沿它的对称轴对折后,

  你能发现等边三角形有哪些特征?

  16、归纳等边三角形性质:

  性质1:等边三角形是 图形,它有 条对称轴。

  性质2:等边三角形 相等。

  17、课本P121 “议一议”:你有哪些办法可以等到一个等腰三角形?(课堂上小组交流)

  三、巩固练习:

  18、等腰三角形一个角为70°,它的另外两个角为

  19、等腰三角形的两边长分别为6,8,则周长为 ;等腰三角形的周长为14,其中一边长为6,则另两边分别为

  20、如图(6),在△ABC中,AB=AC,∠B=70度,点D为BC的中点,

  求∠BAD的度数。

  20、如图(7),△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。

  四、提高题:

  21、如图(8)所示,在△ABC中,AB=AB,FD⊥BC,DE⊥AB,垂足

  分别为D,E,∠AFD=158°,求∠EDF的度数.

  四年级《轴对称图形》教案5

  教学目标:

  1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念

  2、探索并了解角的平分线、线段垂直平分线的有关性质。

  教学重点:

  1、角、线段是轴对称图形

  2、角的平分线、线段垂直平分线的有关性质

  教学难点:角的平分线、线段垂直平分线的有关性质

  准备活动:准备一个三角形、一张画好一条线段的纸张

  教学过程:

  先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案。

  一、探索活动

  教师示范:(按以下步骤折纸)

  1、在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。

  2、在折痕(即平分线)上任意找一点C,

  3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。

  4、将纸打开,新的折痕与OB边交点为E。

  教师要引导学生思考:我们现在观察到的只是角的一部分。注意角的概念。

  学生通过思考应该大部分都能明白角是轴对称图形这个结论。

  问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。是否也有同样的发现?

  学生应该很快就找到相等的线段。

  下面用我们学过的知识证明发现:

  如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。求证:OE=OD。

  巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?

  (1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm。

  (2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm。

  内容二:线段是轴对称图形吗?

  做一做:按下面步骤做:

  1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O。

  2、在折痕上任取一点C,沿CA将纸折叠;

  3、把纸展开,得到折痕CA和CB。

  观察自己手中的图形,回答下列问题:

  (1)CO与AB有什么样的位置关系?

  (2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?

  在折痕上另取一点,再试一试,你又有什么发现?

  学生会得到下面的结论:

  (1)线段是轴对称图形。

  (2)它的对称轴垂直于这条线段并且平分它。

  (3)对称轴上的点到这条线段的距离相等。

  应用:

  (1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____。

  (2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm。

  小结:

  (1)角是轴对称图形。

  (2)角平分线上的点到这个角的两边的距离相等。

  (3)线段是轴对称图形。

  (4)垂直并且平分线段的直线叫做这条线段的垂直平分线。简称中垂线。

  (5)线段垂直平分线上的点到这条线段的两个端点距离相等。

  作业:课本P193习题7。2:1、2、3。

  教学后记:

  学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解。的部分原因是学生忘记了点但直线的距离是什么一回事。而对于中垂线的理解较好。基本上能找到当中相等的线段,并且用学过的知识予以证明。内容较多,容量较大。课后还要加强理解和练习。

【四年级《轴对称图形》教案范文(通用5篇)】相关文章:

轴对称和轴对称图形教案01-21

小学数学《轴对称图形》教案范文04-26

数学教案-轴对称和轴对称图形01-21

初中数学《轴对称与轴对称图形》优秀教案11-19

人教版小学数学《轴对称图形》教案04-26

初中数学《轴对称与轴对称图形》教案设计11-23

《轴对称图形》教学反思范文(通用5篇)07-07

数学教案-教学设计-轴对称图形01-21

四年级下册《轴对称图形》教学反思范文07-24

轴对称图形教学反思范文(精选5篇)05-06