提公因式法教案设计

时间:2023-04-27 01:25:11 其它教案 我要投稿
  • 相关推荐

提公因式法教案设计

  提公因式法教案设计

提公因式法教案设计

  提公因式法、公式法的综合运用导学案

  学习目标

  或学习任务1、进一步熟悉提公因式法、平方差公式、完全平方公式分解因式.

  2、能根据不同题目的特点选择较合理的分解因式的方法.

  3、知道因式分解的方法步骤:有公因式先提公因式,以及因式分解最终结果的要求:必须分解到多项式的每个因式不能再分解为止.

  本课时

  重点难点

  或学习建议教学重点:知道因式分解的步骤和因式分解的结果的要求.

  教学难点:能综合运用提公因式法、公式法分解因式.

  本课时

  教学资源

  的使用电脑、投影仪.

  学习过程学习要求

  或学法指导教师

  二次备课栏

  自学准备与知识导学:

  1、整理知识结构

  提公因式法:关键是确定公因式

  因式分解平方差公式:______________________

  运用公式法:

  完全平方公式:_____________________

  2、分解因式:⑴4a4-100⑵a4-2a2b2+b4

  3、思考:

  ⑴在解答这两题的过程中,你用到了哪些公式?

  ⑵你认为(2a2+10)(2a2-10)和(a2-b2)2这两个结果是因式分解的最终结果吗?若不是,你认为还可以怎样分解?

  ⑶怎样避免出现上述分解不完全的情况呢?

  说明:公式中a、b可以是具体的数,也可以是任意的单项式和多项式.多项式的因式分解,要根据多项式的特点,选择使用恰当的方法去分解,对于有些多项式,有时需同时用到几种不同的方法,才能分解完全.

  学习交流与问题研讨:

  1、例题一(准备好,跟着老师一起做!)

  把下列各式分解因式:⑴18a2-50⑵2x2y-8xy+8y

  ⑶a2(x-y)-b2(x-y)

  2、例题二(有困难,大家一起讨论吧!)

  把下列各式分解因式:⑴a4-16⑵81x4-72x2y2+16y4

  3、因式分解的方法步骤:

  ⑴如果多项式各项有公因式,应先提公因式,再进一步分解.

  ⑵分解因式必须分解到每个多项式的因式都不能再分解为止.

  ⑶因式分解的结果必须是几个整式的积的形式.

  注意:先提取公因式后利用公式.

  注意:两个公式先后套用.分解因式必须分解到每个多项式的因式都不能再分解为止.

  即:“一提”、“二套”、“三查”.说明:将一个多项式分解因式时,首先要观察被分解的多项式是否有公因式,若有,就要先提供因式,再观察另一个因式特点,进而发现其能否用公式法继续分解.

  特别要强调“三查”.

  练习检测与拓展延伸:

  1、巩固练习

  ⑴把下列各式分解因式:

  ①3ax2-3ay4

  ②-2xy-x2-y2

  ③3ax2+6axy+3ay2

  ⑵把下列各式分解因式:

  ①x4-81

  ②(x2-2y)2-(1-2y)2

  ③x4-2x2+1

  ④x4-8x2y2+16y4

  2、提升训练

  ⑴已知2x+y=6、x-3y=1,求14y(x-3y)2-4(3y-x)3的值.

  ⑵已知a+b=5、ab=3,求代数式a3b+2a2b2+ab3的值.

  3、当堂测试

  补充习题P43-441、2、3.

  “一提”、“二套”、“三查”.

  整体代换思想.

  课后反思或经验总结:

  1、通过引导学生回忆因式分解的方法,结合题目观察多项式的特点,看有无公因式,是二项式还是三项式,能否运用公式,用哪一个公式来探索因式分解的方法,进而总结出因式分解的步骤.

  2、强调:进行多项式因式分解时,必须把每一个因式都分解到不能再分为止.

【提公因式法教案设计】相关文章:

法提麦04-29

酶法浸提枸杞的研究04-27

提拉法与温梯法Yb:YAG晶体性能的比较05-01

1天提臀法 超塑身12-31

硅胶破碎法抽提真菌染色体DNA04-27

水提醇沉法提取甘薯根颈多糖05-02

十进制计数法教案设计08-26

氰法提金工艺含氰废水处理04-26

顽提(頑提)04-29

提顿(提頓)04-29