五年级《梯形的面积》教案设计

时间:2023-01-06 14:52:49 其它教案 我要投稿

五年级《梯形的面积》教案设计(通用10篇)

  作为一位优秀的人民教师,就难以避免地要准备教案,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下是小编精心整理的五年级《梯形的面积》教案设计,仅供参考,大家一起来看看吧。

五年级《梯形的面积》教案设计(通用10篇)

  五年级《梯形的面积》教案设计 篇1

  教学目标:

  1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

  2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

  3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

  4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

  教学重点:

  理解并掌握梯形面积公式,会计算梯形的面积。

  教学难点:

  自主探究梯形面积公式。

  教具准备:

  CAI、完全一样的梯形若干个。

  学具准备:

  每生准备两个完全一样的梯形。(有等腰、直角、一般)

  课前预习:

  梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。

  课前准备:

  谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

  我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

  教学过程:

  一、创设情境,激发兴趣。

  (出示情境图)。

  谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

  生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

  师:根据发现,你能提出什么数学问题?

  学生观察情境图,提出问题。

  生:1号甲鱼池的面积有多大?

  师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

  生:1号甲鱼池能放养多少甲鱼苗?

  二、自主探究梯形的面积计算方法。

  1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

  生:梯形。

  师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

  教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

  2.小组讨论交流,教师巡视了解。

  3.展示、汇报交流。

  师:哪个小组先来说说你们的方法。拿着你的'梯形到前面来说给同学听一听。

  生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

  师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

  师:谁有不同的方法?

  生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

  师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

  生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:这个同学说的太好了。大家认为这个方法好不好?

  这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

  生:平行四边形的底,平行四边形的高。

  师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

  师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

  师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

  生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

  师:这个方法是不是所有的两个完全一样的梯形都可以用。

  生:是两个直角梯形。

  师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

  第一种是把梯形分割成一个三角形和一个平行四边形;

  第二种是把梯形分割成两个三角形;

  第三种把两个完全一样的梯形拼成了一个平行四边形。

  表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

  我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

  师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

  生:上底和下底,高

  生:与腰有关。

  师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

  三、探究操作,推导出梯形面积公式

  (一)出示问题,明确目标

  我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

  (点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

  师板书:两个完全一样的梯形拼成平行四边形

  梯形的面积=拼成平行四边形面积÷2 =底×高÷2。

  拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

  师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

  (二)自主探究

  合作学习

  小组内讨论交流。

  学生分组动手操作,教师巡视指导。

  教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

  (三)成果交流,质疑解难

  1.全班展示回报

  师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

  生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

  师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

  师:你们也是这样想的吗?哪个小组再来说说你们的做法?

  2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

  梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

  师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

  3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

  板书面积公式:梯形的面积=(上底+下底)×高÷2。

  提问:(上底+下底)×高算的是什么?为何要除以2?。

  4.学习字母表达式

  谈话:谁能用字母表示?说说每个字母分别表示什么?

  师:S=(a+ b )×h ÷2(板书)

  四、运用知识,解决情景问题。

  师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

  请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

  五年级《梯形的面积》教案设计 篇2

  教学目标:

  1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

  2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

  3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

  教学重点、难点和关键:

  教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

  教具、学具准备:

  教师准备多媒体课件、学生备用梯形硬纸片。

  教学过程:

  一、复习引入:

  1、复习:

  同学们会计算哪些图形的面积?

  计算下列图形的面积:多媒体出示。

  2、引入:

  屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

  3、回忆旧知

  我们在平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

  我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

  二、探索解决问题办法,并尝试转化

  1、引导学生提出解决问题方案

  我们在平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的.新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

  你准备用什么方法把梯形转化为我们学过的图形?

  2、学生尝试转化

  刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

  学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

  那么,用拼摆的方法呢,你准备怎样来拼?

  学生上台演示。

  3、学生操作、实施转化

  学生以四人小组为单位,拼摆梯形。

  请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

  谁来说一说,你是怎样拼的?多媒体课件演示。

  三、观察图形,推导公式:

  1、观察

  同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

  它们的底、高和面积,大小怎样呢?小组讨论。

  学生总结汇报后多媒体课件演示。

  2、计算梯形面积

  平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

  算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

  计算面积,学生口述,教师板书。

  3、推导梯形面积公式

  算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

  用字母表示梯形面积公式

  阅读教材,加深理解

  四、应用公式计算梯形面积

  1、基本练习:

  计算下面梯形面积

  2、教学例题

  出示例题并理解题意。

  计算面积,一人板演,全班齐练。

  3、判断题

  4、抢答题

  5、测量并计算

  五、总结课堂

  五年级《梯形的面积》教案设计 篇3

  教学目标:

  1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

  2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

  教学重点:

  掌握梯形面积的计算公式,并会用公式解决实际问题。

  教学难点:

  理解梯形面积公式推导方法的多样化,体会转化的思想。

  考点分析:

  会用梯形面积公式解决实际问题。

  教学方法:

  游戏引入新知讲授巩固总结练习提高

  教学用具:

  课件、多组两个完全相同的梯形。

  教学过程:

  一、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  二、通过旧知迁移引出新课。

  教师:同学们还记得平行四边形和三角形的面积怎么求吗?

  1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

  2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

  3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

  三、揭示课题;

  根据学生的回答,引出新课,梯形的面积。

  板书课题--梯形的.面积。

  四、新知探究

  1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  2、请同学们打开学具袋,看看里面的梯形有什么特点?

  五年级《梯形的面积》教案设计 篇4

  一、复习准备。

  1、出示平行四边形图。

  2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?

  3、揭题。

  二、新授。

  1、出示梯形图。

  (1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?

  (2)操作实验。

  反馈:你拼成了什么图形?指名拼一拼。

  指导拼法。

  ①重合。

  ②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。

  ③平移。

  思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?

  2、出示直角梯形图。

  (1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。

  (2)提问:拼成了什么图形?平行四边形与梯形有什么关系?

  (3)观察:每个直角梯形的面积与拼成的.长方形的面积有什么关系?

  小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。

  3、观察拼成的平行四边形。

  思考:

  (1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?

  (2)比较梯形的高与拼成的平行四边形的高有什么关系?

  同桌讨论完成填空。

  4、填表。

  (1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。

  (2)从实验中你有什么发现?说说怎样求梯形的面积?

  5、教学字母公式。

  提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。

  三、应用。

  1、 应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?

  2、 学习例题。

  3、 完成“练一练”。

  4、 拓展。

  四、总结。

  1、 这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?

  2、 通过什么方法转化的?

  3、 梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?

  五、板书。

  梯形面积的计算

  平行四边形的面积 = 底×高

  梯形的面积 = (上底+下底)×高 2

  S = (a+b) h 2

  五年级《梯形的面积》教案设计 篇5

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教具准备:

  1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

  2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

  3、学生将教科书第147页上面的两个梯形剪下来。

  教学过程:

  一、复习。

  出示三角形图。

  问:三角形的面积怎样求?

  这个三角形的面积是多少?

  三角形的面积计算公式我们是怎样推导出来的?

  怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

  师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

  二、新课。

  1.教学梯形面积的计算公式。

  出示教科书第80页上面的梯形图。

  问:这个图形是什么形?(梯形)

  师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

  问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的'图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

  教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

  问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

  两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

  平行四边形的底等于什么?(等于梯形的上底、下底之和)

  平行四边形的高和梯形的高有什么关系?(相等)

  平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

  一个梯形的面积怎样算?(提示学生回答,

  教师板书:(3+5)×4÷2

  =8×4÷2

  =32÷2

  =16(平方厘米)

  师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

  问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

  平行四边形的高是什么?(就是梯形的高)

  板书:

  平行四边形的面积=(上底+下底)×高

  梯形的面积=(上底+下底)×高÷2

  如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

  S=(a+b)×h÷2

  问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

  2.应用出的梯形面积公式计算梯形面积。

  (1)出示第81页例题。

  指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

  问:这个梯形的上底是多少?下底呢?

  这个梯形的高是多少?

  梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

  (2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

  三、巩固练习。

  练习十九第1、2题。

  四、作业。

  练习十九第3、4题。

  五年级《梯形的面积》教案设计 篇6

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重点、难点:

  理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:

  课件。

  教学过程:

  (一)复习旧知,做好铺垫。

  1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的`面积公式的。

  2、练习(出示)

  口答下面各图形的面积。(单位:厘米)

  (二)创设情景,提出问题

  师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

  师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

  师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

  (三)小组学习,解决问题。

  师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

  合作要求:

  (1)想一想:我们已经学过哪几种图形的面积公式?

  (2)试一试:把梯形转化成已经学过的图形(任选一种)

  (3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

  (4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

  全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

  教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

  师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

  师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

  课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

  让学生独立计算,在集体订正。

  师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

  (四)应用拓展,巩固知识。

  师:下面我们来做练习吧。

  1、一☆练习

  a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

  b.课件出示:P75做一做,由学生独立完成,集体订正。

  c.课件出示:判断

  1)两个梯形能拼成一个平行四边形。( )

  2)平行四边形的面积是梯形面积的2倍。( )

  让学生独立判断,并说明理由。

  2、二☆练习

  a.课件出示:

  一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

  b.课件出示:

  我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

  (顶层根数+底层根数)×层数÷2

  想一想是什么道理,并算出图中圆木的总根数。

  3、三☆练习

  课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

  学生独立解答,再交流。

  (五)小结全课,结束教学

  让学生讲讲这节课的收获,并布置作业。

  有时间的话做“思考”

  在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

  五年级《梯形的面积》教案设计 篇7

  教学目标

  1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。

  2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  教学重难点

  教学重点:探索并掌握梯形面积计算公式。

  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。

  教学过程

  一、复习引入,知识铺垫

  计算下面各图形的面积:

  全班核对答案。

  教师:平行四边形、三角形的面积计算公式分别是什么?

  教师:它们之间有什么联系呢?

  因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。

  【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。

  二、探究梯形面积的计算公式

  1、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  教师:你能用学过的方法推导出梯形的面积计算公式吗?

  2、动手操作。

  (1)选择合适的材料,进行操作。(同桌合作)

  (2)反馈交流。

  让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。

  预设:

  ①数方格;

  ②拼摆,转化成平行四边形;

  ③割,转化成两个三角形;

  ④割,转化成一个平行四边形和一个三角形;

  ⑤割,转化成长方形和两个三角形;

  ⑥割补法,转化成平行四边形。

  【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。

  3、公式推导。

  (1)教师:

  方法①的数方格的方法中渗透着割补法的思想,

  方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。

  先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?

  学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。

  学生边说,教师边课件演示。

  逐步完成板书:

  教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。

  (2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?

  学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。

  学生边说,教师边板书演示。

  教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。

  教师:这与前面推导出来的梯形面积计算公式是一样的。

  (3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。

  学生边说,教师边板书演示。

  其中的计算过程稍复杂,可配合教师讲解完成。

  教师:这和前面推导出来的结论是一样的。

  (4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?

  学生:长方形的.长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。

  学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。

  教师边板书演示。

  教师:接下来的推导过程和方法④是一样的。

  (5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。

  教师课件演示。

  教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)

  【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。

  三、学以致用

  1、出示教材第96页例3。

  例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2、练习,出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3、求面积,只列式不计算?

  4、求出这条水渠的横截面?

  5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?

  6、判断:

  1、两个面积相等的梯形可以拼成一个平行四边形()。

  2、梯形面积是三角形面积的2倍()。

  3、一个梯形有无数条高()。

  4、如果梯形的面积是12平方厘米,两个完全一样的梯形拼成的平行四边形的面积是6平方厘米。()

  5、一个梯形上下底的和是20米,高是8米,这个梯形的面积是80平方米。()。

  【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。

  四、回顾反思

  教师:回顾本节课所学的内容,你最大的收获是什么?

  【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。

  五、布置作业

  完成教材第97页第1题到第5题。

  五年级《梯形的面积》教案设计 篇8

  教学目的:

  通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

  教具准备:

  将下面复习中的图画在小黑板上。

  教学过程:

  一、复习。

  1.口算:练习十九的第5题。

  2.出示小黑板。

  师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

  S=(a+b)×h÷2)

  这个梯形的面积是多少?(学生独立计算)

  二、做练习十九中的题目。

  1.第7题,出示水渠模型,问:

  这是什么模型?它的横截面是什么形?

  渠口的宽可以看成是梯形的什么?渠底的宽呢?

  渠深可以看成是梯形的什么?

  (学生独立完成填表)

  2.第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

  现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

  看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的'面积相等。)

  3.第9题,让学生独立做,做完后集体核对。

  4.学有余力的学生做第16题和17题。

  第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

  第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

  高能不能求出来呢?怎样求?

  怎样利用涂色的三角形的条件求出梯形的高呢?

  三、作业。

  练习十九的第6题和第10题。

  五年级《梯形的面积》教案设计 篇9

  一、 教学目标

  1、 在实际情境中,认识计算梯形面积的必要性。

  2、 在自主探索活动中,经历推导梯形面积公式的过程。

  3、 运用梯形面积的计算公式,解决相应的实际问题。

  二、 重点难点

  重点:梯形面积公式的推导过程。

  难点:能运用梯形面积的计算公式,解决相应的实际问题。

  三、 教学准备

  相等梯形若干个、小剪刀、挂图

  四、 教学设计

  (一)复习旧知,铺垫引导

  1、 前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)

  2、 把不知道的转化成知道的从而得出结论,是我们常用的`探究新知的方法。

  (二)揭示课题,探索新知

  1、 出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)

  2、 今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)

  3、 下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)

  4、 小组内交流方法。

  5、 学生汇报,教师总结。

  (1)平移法

  用两个大小完全一致的梯形。经过旋转、平移组成平行四边形。

  (2)分割法

  将梯形分割成两个三角形。

  (3)割补法

  取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。

  得出结论: 梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  (三)巩固练习

  1、 P28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

  2、 P28练一练1题,继续巩固练习。

  (四)总结全文

  1、 这节课我们学习了什么?

  2、 梯形面积公式的推导〈梯形面积=(上底+下底)高2〉

  五、 板书设计

  梯形的面积

  梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  六、 教学反思

  本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。

  五年级《梯形的面积》教案设计 篇10

  教学目的:

  使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  教学重点:

  应用所学的知识解决一些实际问题。

  教学准备:

  实物投影仪等。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的'想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)3.11.82.02.0

  渠底宽(米)1.51.21.00.8

  渠深(米)0.80.80.50.6

  横截面面积

  (平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

【五年级《梯形的面积》教案设计】相关文章:

《梯形的面积》教案04-25

《梯形的面积》教学反思08-25

梯形面积计算教案04-25

北京版五年级数学上册教案设计《梯形的特征和面积》01-17

梯形的面积教学反思(精选15篇)04-25

五年级数学《梯形面积的计算》教案02-10

《梯形的面积》教学反思(通用12篇)11-09

《梯形的面积》教学反思范文(精选11篇)01-17

五年级数学教案:梯形面积的计算04-10