数学家的故事左右

时间:2024-04-29 17:55:13 许清 资料大全 我要投稿
  • 相关推荐

数学家的故事100字左右(精选24篇)

  很多著名的数学家都有他们的自己的小故事,这些故事都是他们人生珍贵的财富,小编今天就为大家带来数学家的故事,欢迎阅读。

数学家的故事100字左右(精选24篇)

  1、陈景润

  数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装。由于家境贫寒,他经常一天吃两顿饭,为的是把省下的钱用来买书。他说:“饭可以不吃,书不可以不念。”他平时不看电影,不随便和人闲聊,全身心地投入学习当中。

  那时,宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书。

  在进军“哥德巴赫猜想”时,他居住在6平方米的小屋里,演算全靠自己笔算。他演算的手稿有几麻袋。就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年终于攻克了“(1+2)”这个堡垒。英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为“陈氏定理”,说它是“筛法”的“光辉顶点”。一位英国数学家写信称赞他:“您,移动了群山!”

  2、高斯

  高斯最著名的故事莫过于小学时计算1+2+3++100的值。当时高斯上小学,老师在班上出了这样一道题,叫大家算。那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,这样一共有50个101,因此结果是5050。

  还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。

  3、欧拉

  欧拉1707年出生在瑞士的巴塞尔城,小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。13岁就进巴塞尔大学读书,这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。在大学里得到当时最有名的数学家微积分权威约翰·伯努利(Johann Bernoulli,1667—1748年)的精心指导,并逐渐与其建立了深厚的友谊。约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人。”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位。1725年,欧拉开始了他的数学生涯。

  4、华罗庚

  华罗庚初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计,为的是能谋个会计之类的职业养家糊口。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮助父亲料理杂货铺。在单调的站柜台生活中,他开始自学数学。他回家乡一面帮助父亲在“乾生泰”这个只有一间小门面的杂货店里干活、记账,一面继续钻研数学。回忆当时他刻苦自学的情景,他的姐姐华莲青说:“尽管是冬天,罗庚依然在账台上看他的数学书。鼻涕流下时,他用左手在鼻子上一抹,往旁边一甩,没有甩掉,就这样伸着,右手还在不停地写……”

  那时罗庚站在柜台前,顾客来了就帮助父亲做生意,打算盘、记账,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓一跳。因为经常发生类似的莫名其妙的事情,时间久了,街坊邻居都传为笑谈,大家给他起了个绰号,叫“罗呆子”。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死得抱着书不放。

  5、牛顿

  “我一定要超过他!”

  一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。

  平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。

  有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。

  当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。

  经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。

  6、祖冲之

  今天,我读了一本数学家的故事里面介绍了一位著名的数学家—祖冲之。

  祖冲之是我国南北朝时期的数学家、天文学家。祖冲之的父亲和祖父都爱好数学,他就是生活在这样的家庭里,从小就读了很多书。他特别爱研究数学和天文历法,经常观察太阳和星球的情况。宋孝武帝听到他的名气,很喜欢他。派他去做官,但是他对做官不敢兴趣,还是专心的研究数学,这种精神多值得我们学写呀!他还创制出了一部新的历法——大明历。他为古代数学著作九章算术作了注释,又编写了一本缀术。在当时那样艰苦的条件下他做出了这么大的贡献,可见祖冲之是多么伟大。

  我要学习祖冲之这种勇往直前、坚持不懈的学习和研究精神。

  7、蒲丰

  一天,法国数学家蒲丰请许多朋友到家里,做了一次试验。蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半。蒲丰说:请大家把这些小针往这张白纸上随便仍吧!客人们按他说的做了。

  蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,22107043.142。蒲丰说:这个数是的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。这就是著名的蒲丰试验。

  8、沙贡塔娜

  1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。

  工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。

  这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

  9、韦达

  韦达(1540-1603),法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。

  主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家。

  10、花拉子密

  阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”

  而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

  11、钱钟书

  钱钟书是我国著名的大作家,也是一位学贯中西的大学者。

  1929年夏,钱钟书高中毕业,报考当时的全国最高学府——清华大学,就在入学考试时,钱钟书拿到数学试卷,一道道数学题看起来像天书一样,他几乎都不会做,但迫不得已,就硬着头皮做了几道题,也不知对错。

  发榜的时候,钱钟书看到自己的数学只考了15分。而按照清华大学的招生规定,只要有一门课程不及格,就不予录取。他的数学考得这么差,应当说是一点儿希望都没有了。可是他的国文和英文成绩都是满分,当时的校长罗家伦看到钱钟书的英文、中文成绩俱佳,高出一般考生一大截,就决定打破常规,破格录取。

  正是罗家伦的这一次破例,成就了学贯中西的一代学者。

  12、诺伊曼

  诺伊曼(1903-1957),美籍匈牙利数学家,美国科学院院士。

  诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作是开辟了数学的一个新分支---对策论。1944年出版了他的杰出着作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。

  13、鲁道夫

  16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。

  瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

  14、塞乐斯

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。

  他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

  15、诺伯特·维纳

  世纪著名数学家诺伯特·维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。

  在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9,全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”

  维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。

  这个年仅18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。

  16、笛卡儿

  笛卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科?

  笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的.地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。

  笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。

  笛卡儿在物理学,生理学和天文学方面也有许多独到之处。

  17、秦九韶

  秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。

  在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。 因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的.时间领先,其实想法的成熟,还有待提高。为了解决 “孙子问题”中的不足,秦九韶推广了“孙子问题”的解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。

  18、哈代

  英国数学家哈代有一次要从丹麦坐船回英国,到了码头才发现已经没有大船了、坐小船穿越北海风险很大,同行的乘客都分分向上帝祈祷平安。而哈代没有祈祷,只是写了一张明信片寄给丹麦数学家波尔(物理学家尼尔斯·波尔的滴滴)。波尔收到信后大吃一惊,信上只写了一句话:“我证明了黎曼猜想。”(黎曼猜想是和哥德巴赫猜想同等级甚至更高的.数学难题)

  哈代平安回到应该后,才向波尔解释原因。其实他并没有证明黎曼猜想,但如果他坐的`船失事了,鉴于他在数学界的崇高地位,大多数人会相信他证明出了黎曼猜想,只是不幸在随后的海难中逝世。而哈代是一名坚定的无神论者,如果上帝真的.存在,就不会让船失事,让哈代平白获此如此巨大的荣誉。

  所以他就开了这个“逆向祈祷”的玩笑。

  19、王贞仪

  女数学家王贞仪(1768-1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

  从她遗留下来著作可以看出,她是一位从事天文和筹算研究女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状计算工具。一般是竹制或木制一批同样长短粗细小棒,也有用金属、玉、骨等质料制成,不用时放在特制算袋或算子筒里,使用时在特制算板、毡或直接在桌上排布。应用“算筹”进行计算方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”记述,现在所见最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

  20、吴文俊

  吴文俊(1919年5月12日-2017年5月7日),1919年5月12日出生于上海,祖籍浙江嘉兴,数学家,中国科学院院士,中国科学院数学与系统科学研究院研究员,系统科学研究所名誉所长。吴文俊毕业于交通大学数学系,1949年,获法国斯特拉斯堡大学博士学位;1957年,当选为中国科学院学部委员(院士);1991年,当选第三世界科学院院士;陈嘉庚科学奖获得者,2001年2月,获2000年度国家最高科学技术奖。

  对数学的主要领域—拓扑学做出了重大贡献。他引进的示性类和示嵌类被称为“吴示性类”和“吴示嵌类”,他导出的.示性类之间的关系式被称为“吴公式”。他的工作是1950年代前后拓扑学的重大突破之一,成为影响深远的`经典性成果。1970年代后期,他开创了崭新的数学机械化领域,提出了用计算机证明几何定理的“吴方法”,被认为是自动推理领域的先驱性工作。他是我国最具国际影响的数学家之一,他的工作对数学与计算机科学研究影响深远。

  21、丘成桐

  丘成桐(Shing-TungYau),原籍广东省蕉岭县,1949年出生于广东汕头,同年随父母移居香港,美籍华人,国际知名数学家,菲尔兹奖首位华人得主,美国国家科学院院士、美国艺术与科学院院士、台湾中央研究院院士、中国科学院外籍院士、香港科学院名誉院士。现任香港中文大学博文讲座教授兼数学科学研究所所长、哈佛大学WilliamCasperGraustein讲座教授、清华大学丘成桐数学科学中心主任、北京雁栖湖应用数学研究院院长。

  菲尔兹奖首位华人得主,丘成桐证明了卡拉比猜想、正质量猜想等,是几何分析学科的奠基人,以他的名字命名的卡拉比-丘流形,是物理学中弦理论的基本概念,对微分几何和数学物理的发展做出了重要贡献。是第一位获得这项被称为“数学界的.诺贝尔奖”的华人,也是继陈省身后第二位获得沃尔夫数学奖的华人。

  22、柯召

  柯召(1910年4月12日~2002年11月8日),字惠棠,浙江温岭人,数学家、中国科学院资深院士、被称为中国近代数论的创始人、二次型研究的开拓者、一代数学宗师。 1933年(中华民国二十二年)毕业于清华大学,1937年(民国二十六年)获英国曼彻斯特大学博士学位,1950年加入九三学社,1955年当选为中国科学院院士。

  柯召在英国曼彻斯特大学深造时,在导师Mordell的指导下研究二次型,在表二次型为线性型平方和的`问题上,取得优异成绩。

  他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的``工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人才。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。

  23、李冶

  李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。

  李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。

  和秦九韶一样,李冶并不认为算学是“九九贱技”,认为“小数之假所以为大道所归”,也就是说“道”既来源于“小数”(技艺),又借“小数”而体现。他曾经在《益古演段》序中说过:“安知轩隶之秘不于是乎始?”(谁知道轩辕隶首得道的`秘诀不是始于数学呢?)也许通过对数学这种“小数”的追求也可以达到“技进乎道”的境界。

  李冶对当时基于道教和理学的..数学神秘主义不以为然。在《测圆海镜》的序文中,李冶认为自然之数(数字)虽然不可穷尽但数学的道理(自然之理)是可以推导的,而数学的道理如同黑暗中的光亮一般,只要明白了道理,就可以明白数学的奥妙。

  24、张邱建

  张邱建,北魏清河(今邢台市清河县)人,约公元5世纪,著名的数学家。他从小聪明好学,喜欢算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。

  《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。“百鸡问题”是《张邱建算经》中的一个世界著名的不定方程问题,它给出了由三个未知量的两个方程组成的不定方程组的解。

  计算也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。

  《张邱建算经》中的“百鸡问题”是世界上首次提出的三元一次不定方程及其一种解法,它是我国乃至全世界古代数学史中的一个奇葩。这比欧州发现和研究这个问题要早一千多年。

【数学家的故事左右】相关文章:

关于数学家毕达哥拉斯的经典故事07-20

雷锋的故事200字左右(精选22篇)03-03

母亲节作文500字左右03-13

神话故事读后感100字左右(精选29篇)08-07

20字左右的运动会加油稿09-27

运动会加油稿20字左右09-29

运动会加油稿20字左右汇总11-18

名人故事:屈原的爱国故事07-31

运动会加油稿60字左右10篇09-27