- 相关推荐
《多边形的内角和》说课稿(通用10篇)
作为一名默默奉献的教育工作者,通常会被要求编写说课稿,是说课取得成功的前提。那么你有了解过说课稿吗?以下是小编整理的《多边形的内角和》说课稿,欢迎大家分享。
《多边形的内角和》说课稿 1
一、背景分析
1、 学习任务分析:
《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习 镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的重点。
2、学生情况分析:
(1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。
(2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。
二、教学目标设计
依据新课标的要求,我设计本节课的教学目标为以下四个方面:
知识与技能:
通过实验探索多边形内角和公式。
数学思考:
1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。
解决问题:
通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的'方法,并能有效地解决问题,积累解决问题的经验。
情感态度:
通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。
三、课堂结构设计
整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。
四、教学媒体设计
七年级学生思维活跃,容易接受新鲜事物,对直观的东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出重点突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。
五、教学过程设计:
1、创设情景:
我设计了两个情景:
情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。
情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。也易于学生接受。
2、建立模型:
活动1:
猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度,
议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:
①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解。
②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;
③“分”——即通过添加辅助线的方法,把四边形分割成三角形。
这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。
想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。
活动2:
选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。
活动3:
想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于以下不同形式的公式:
①(n-2)180°
②180°n-360°
③180°(n-1)- 180°
通过任意多边形转化为三角形的过程,发展学生的空间想象能力。通过多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。在探索的过程中,再一次发展学生的推理能力和表达能力,在交流与合作的过程中,感受合作的重要性。
3、解释与应用
(1)智慧大比拼。通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。目的是检验学习效果,让学生经历运用知识解决问题的过程,发展学生的推理能力和语言表述能力,给学生获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。
(2)情系奥运。引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。
4、拓展与探究
小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。
5、反思与作业
请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
六、教学评价设计:
学生学习水平评价:学生是否积极参与;是否独立思考;是否富于想象;是否敢于否定;是否兴趣浓厚;是否善于合作;能否主动探索;能否自由表达。
学生学习效果评价:通过解释与应用,拓展与探究两个环节初步了解部分学生对本节知识的掌握情况,课后通过分层次作业,三天后进行的小测验,了解学生对本节内容的掌握情况,及时发现问题,对教学中的疏漏进行弥补。
教师在教学过程中要及时根据学生回答,让学生之间进行互评,反馈,同时对于不同层次的学生和不同难度问题,教师要及时的给予反馈和评价。另外,通过学生评价自己和他人的表现,教师也要进行自我反思。
《多边形的内角和》说课稿 2
尊敬的评委老师、亲爱的同学们:
大家好!今天,我非常荣幸能够在这里为大家讲解初中数学中的一个重要知识点——《多边形的内角和》。接下来,我将从教材分析、教学目标、教学重难点、教学方法、教学过程以及板书设计六个方面来阐述我的教学设计。
一、教材分析
本节课选自初中数学几何部分,是在学生学习了三角形内角和定理的基础上进行的拓展和深化。多边形内角和的探究,不仅是对前面知识的综合运用,也是后续学习多边形外角和、镶嵌图形等内容的基础,具有承上启下的重要作用。
二、教学目标
知识与技能:掌握多边形内角和的计算公式,并能灵活运用该公式解决相关问题。
过程与方法:通过动手操作、观察归纳、合作交流等数学活动,体验从特殊到一般、从具体到抽象的数学探究过程。
情感态度与价值观:培养学生的探究精神、合作意识和解决问题的能力,激发学生对数学学习的兴趣。
三、教学重难点
教学重点:多边形内角和的计算公式及其推导过程。
教学难点:理解多边形分割成三角形的方法,并灵活应用于解决实际问题。
四、教学方法
本节课采用启发式教学法、探究式学习法、小组合作学习法等多种教学方法相结合。通过引导学生动手操作、观察分析、归纳总结,让学生在“做中学”、“学中思”,从而深刻理解多边形内角和的概念及其计算方法。
五、教学过程
导入新课:通过复习三角形内角和定理,引导学生思考多边形内角和的求解方法,激发学生探究兴趣。
新知探究:
动手操作:让学生尝试将四边形、五边形等多边形分割成三角形,观察并记录每个三角形的'内角和。
观察归纳:引导学生观察分割后的三角形数量与多边形边数的关系,归纳出多边形内角和的计算公式。
公式推导:教师结合学生的归纳结果,进行公式推导,使学生理解公式的由来。
巩固练习:设计不同层次的练习题,让学生运用所学知识解决问题,巩固新知。
总结提升:引导学生总结本节课的学习内容,强调多边形内角和公式的应用及注意事项,并鼓励学生提出疑问和见解。
布置作业:布置适量的课后作业,包括基础题、提高题和拓展题,以满足不同层次学生的需求。
六、板书设计
略
《多边形的内角和》说课稿 3
尊敬的各位评委、老师:
大家好!今天,我非常荣幸能在这里为大家说课,我的说课内容是人教版初中数学中的《多边形的内角和》。接下来,我将从教材分析、教学目标、教学重难点、教学方法、教学过程以及板书设计六个方面展开我的说课。
一、教材分析
《多边形的内角和》是初中数学几何部分的重要内容之一,它建立在三角形内角和定理的基础上,通过图形的分割与组合,引导学生探索多边形内角和的规律。这一知识点不仅加深了学生对几何图形的认识,还培养了学生的逻辑思维能力和空间想象能力,为后续学习多边形外角和、平面镶嵌等知识打下坚实的基础。
二、教学目标
知识与技能:学生能够理解多边形内角和的概念,掌握多边形内角和的计算公式,并能熟练运用公式解决相关问题。
过程与方法:通过动手操作、观察分析、归纳总结等活动,培养学生探究问题、解决问题的能力,以及合作交流的能力。
情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、敢于质疑的科学精神,以及严谨求实的数学态度。
三、教学重难点
教学重点:多边形内角和的计算公式及其推导过程。
教学难点:如何引导学生通过图形的分割与组合,自主发现多边形内角和的规律,并理解公式的本质。
四、教学方法
本节课采用“问题导向、合作探究”的教学模式,通过创设问题情境,引导学生发现问题、提出问题,进而通过小组合作、动手操作、观察分析等方式,探索解决问题的方法,最终归纳总结出多边形内角和的计算公式。同时,辅以多媒体教学手段,直观展示图形的变化过程,帮助学生更好地理解和掌握知识。
五、教学过程
导入新课:通过复习三角形内角和定理,引导学生思考:如果三角形变成了四边形、五边形等多边形,它们的内角和又该如何计算呢?从而引出本节课的课题——《多边形的'内角和》。
新知探究:
活动一:分组让学生动手剪出四边形,并尝试通过分割成三角形来计算其内角和,引导学生发现四边形可以分割成两个三角形,从而得出四边形内角和为360°。
活动二:引导学生类比四边形的方法,探索五边形、六边形等多边形的内角和,通过小组合作、交流讨论,归纳出多边形内角和的一般公式。
公式推导:教师引导学生回顾活动过程中的发现,通过逻辑推理,推导出多边形内角和的计算公式,并强调公式的适用范围和注意事项。
巩固练习:设计不同层次的练习题,让学生运用所学知识解决问题,巩固新知,同时教师巡视指导,及时发现并纠正学生的错误。
课堂小结:师生共同总结本节课的知识点、学习方法和学习心得,强调多边形内角和的计算公式及其重要性。
布置作业:布置适量的课后作业,包括基础题和拓展题,以巩固和拓展学生的知识和技能。
六、板书设计
略
以上就是我关于《多边形的内角和》的说课内容,谢谢大家的聆听!
《多边形的内角和》说课稿 4
尊敬的各位评委、老师:
大家好!今天,我非常荣幸能够在这里向大家展示《多边形的内角和》这一课的教学设计。本课是初中数学几何部分的重要内容,旨在通过探究多边形内角和的规律,培养学生的逻辑推理能力、空间想象能力以及解决问题的能力。
一、教材分析
《多边形的内角和》是人教版初中数学七年级下册的内容,它是在学生已经掌握了三角形内角和为180°的基础上进一步拓展的。本课不仅要求学生掌握多边形内角和的计算公式,更重要的.是让学生经历从特殊到一般、从具体到抽象的探究过程,体验数学发现的乐趣。
二、学情分析
七年级学生正处于形象思维向抽象思维过渡的阶段,他们好奇心强,喜欢动手操作,但抽象思维能力和逻辑推理能力尚待提高。因此,在教学中,我将注重创设情境,激发学生的兴趣,通过小组合作学习、动手实践等方式,引导学生主动探索,发现规律。
三、教学目标
知识与技能:理解多边形内角和的概念,掌握多边形内角和的计算公式,并能熟练运用公式解决实际问题。
过程与方法:通过观察、猜想、验证等数学活动,经历多边形内角和的探索过程,培养学生的观察、分析、归纳和推理能力。
情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、敢于质疑的科学精神,以及合作交流的学习态度。
四、教学重难点
重点:多边形内角和的计算公式及其推导过程。
难点:如何引导学生从特殊到一般,通过转化思想将多边形内角和问题转化为三角形内角和问题来解决。
五、教学方法
本节课主要采用情境教学法、合作探究法、直观演示法等教学方法。通过创设生活情境,激发学生的学习兴趣;通过小组合作探究,引导学生主动发现规律;通过直观演示,帮助学生理解抽象概念。
六、教学过程
情境导入:展示一个多边形的生活实例(如多边形窗户、多边形地砖等),提出问题:“这些多边形的内角和是多少度呢?”引发学生思考,进入新课学习。
新知探究:
活动一:从三角形开始,复习三角形内角和为180°的知识。
活动二:引导学生探究四边形内角和。通过分割四边形为两个三角形,得出四边形内角和为360°。
活动三:小组合作,探究五边形、六边形等多边形内角和的计算方法,并尝试总结多边形内角和的一般规律。
公式推导:引导学生观察、分析、归纳,得出多边形内角和的计算公式:S=(n2)×180,其中n为多边形的边数。
巩固练习:设计不同层次的练习题,让学生运用所学知识解决实际问题,巩固新知。
课堂小结:师生共同回顾本节课的学习内容,强调多边形内角和的计算公式及其推导过程,鼓励学生分享学习心得。
作业布置:布置相关习题,要求学生独立完成,以检验学习效果。
七、板书设计
本节课的板书设计将突出教学重点,清晰呈现多边形内角和的计算公式及其推导过程,同时留有一定的空间供学生记录学习笔记。
以上就是我对《多边形的内角和》这一课的说课设计,谢谢大家的聆听!
《多边形的内角和》说课稿 5
各位评委、老师:
大家好!今天我说课的内容是《多边形的内角和》。
一、教材与学情
本课基于学生已掌握的三角形内角和知识,进一步探索多边形内角和的规律。七年级学生具备初步的逻辑推理和空间想象能力,但尚需加强。
二、教学目标
掌握多边形内角和的计算公式。
通过探究过程,培养逻辑推理和归纳能力。
激发学习兴趣,培养探索精神。
三、教学重难点
重点:多边形内角和的计算公式。
难点:从特殊到一般的探究过程及转化思想的应用。
四、教学方法
采用情境导入、合作探究、直观演示等方法,引导学生主动探索。
五、教学过程
导入:通过生活实例引入多边形内角和的问题。
探究:
复习三角形内角和。
分割四边形,探究其内角和。
小组合作,探究更多边形内角和的'规律。
推导公式:归纳得出多边形内角和的计算公式。
练习巩固:设计练习题,检验学习效果。
小结与作业:总结学习内容,布置相关作业。
六、板书设计
略
《多边形的内角和》说课稿 6
一、教材分析
1. 教材的地位和作用
本节课是新课标义务教育课程标准实验教科书数学,七年级(下)第七章第三节多边形的内角和第一课时。本课起着承上启下的作用,从三角形的内角和拓展到多边形的内角和,再将公式应用于平面镶嵌,层层递进,易于激发学生的学习兴趣,符合学生的认知特点。通过本节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂、从特殊到一般的数学思想方法。
2. 学情分析
学生在之前已经学习了三角形及特殊四边形(如长方形、正方形)的内角和,对多边形内角和问题已有一定认识。本节课将进一步深化学生的理解,探索多边形内角和的公式及其运用。
3. 教学重点和难点
重点:多边形的内角和公式的`探索及运用。
难点:探索多边形内角和时,如何把多边形转化成三角形。
二、教学目标
1. 知识与技能目标
掌握多边形的内角和公式,并能熟练运用。
2. 数学思考目标
感受数学思考过程的条理性,发展推理和语言表达能力,体会从特殊到一般的认识问题方法。
3. 解决问题目标
通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法,并能有效解决问题。
4. 情感态度目标
体验猜想得到证实的成就感,提高学习热情,培养乐于合作交流和独立思考的习惯。
三、教法学法分析
1. 教学思想
以学生的数学活动为主线,以参与为核心,以自主合作探究为主要方式,培养学生的创新能力和实践能力。
2. 教学方法
采用实验法、讨论法、发现法,设计“三动教学法”(全动、互动、主动)。
3. 学法指导
引导学生采取观察、实验、猜想、验证、归纳推理和交流等学习方法。
4. 教学手段
利用多媒体辅助教学,直观演示,实现“数形结合”的教学。
四、教学过程
1. 创设情境,引入新课
通过学生动手实践,如剪纸片、测量角度等,激发学生的好奇心和求知欲,自然引出课题。
2. 合作交流,探索新知
回顾三角形内角和,引出四边形内角和的探究。
学生分组讨论,通过量角、剪拼等方法,猜想并验证四边形内角和为360°。
进一步推广到五边形、六边形,直至n边形,通过类比和归纳得出多边形内角和公式。
3. 自主探索,得出结论
学生通过独立思考和小组讨论,得出n边形内角和公式:(n-2)×180°。
教师总结归纳,强调转化思想的重要性。
4. 应用新知,尝试练习
给出实际问题,如求多边形边数或内角和,让学生运用所学公式解决。
学生互编题目,增强对知识的理解。
5. 归纳小结,形成体系
引导学生总结本节课的知识点和方法,形成知识体系。
6. 课后思考,练习作业
布置相关练习题,巩固所学知识。
五、教学评价
在教学过程中,关注学生的情绪状态、积极性、自信心以及合作交流意识和独立思考习惯。通过激励和批评手段,全面考察学生的学习状况,激励学习热情,促进全面发展。
《多边形的内角和》说课稿 7
各位评委、老师:
早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和” 。说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。
一、 教材分析
1、教学内容
“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用
本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间xxx形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础, 公式的运用还充分地体现了xxx形与客观世界的密切联系。
3、重点与难点
多边形内角和的公式及公式的推导和运用是本节课的重点; 因为公式的得出可以用多种不同的方法推导, 所以我确定本节课的难点是如何引导学生通过自主学习, 探索多边形内角和的公式。
二、教学目标
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
① 识别多边形的顶点、边、内角及对角线;
② 理解多边形内角和公式的推导过程;
③ 掌握多边形内角和公式的内涵及其运用。
能力目标:
① 培养学生类比归纳、转化的能力;
② 培养学生观察分析、猜想和概括的能力。
思想情感目标:
通过体会数学的美感,提高审美能力, 树立认识数学来源于生活,又服务于实践的观点。
三、教法分析
在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察----分析----猜想----概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
四、过程设计
1、创设问题情境,引入新课
我是这样设计问题的:
在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么xxx形?再把橡皮筋的一边又往外拉,再固定, 又围成什么xxx形?……不断地向外拉,结果围成什么xxx形?
如果上述情况不是往外拉而是往里推,那是什么xxx形?
在学生的回答中引出主题:今天我们来学习多边形的有关知识.
(板书: 多边形的内角和)。
因为前面已经学过三角形的有关知识, 从学生熟悉的情境入手引入新知识, 更能引起学生的学习兴趣, 启发思考: 多边形与三角形有什么密切的联系呢? 渗透了互为转化的思想。
2、新课学习:
(1)基本概念
我把新课的.引入过程作为本节课一条主线,各环节都围绕着这条主线展开。
首先告诉学生:我们往外拉得到的这些xxx形称为凸多边形,你能给往里推得到的多边形起个名字吗?怎样区别这两种xxx形呢?把凹多边形与凸多边形从分割的角度来区别,指出暂时研究的只是凸多边形。
帮助学生复习三角形的有关概念,类比得出四边形、五边形、… n边形的定义,识别多边形的顶点、边及内角,并会表示出一个多边形。
引入特殊多边形之前, 先欣赏生活中常见到的丰富多彩的xxx案, 让学生体会数学的美,提高审美情趣. 称这样的多边形为正多边形,说明这种规则的、对称的xxx形非常重要,为下一节学习用正多边形铺设地板作好铺垫。
在多边形的对角线这一概念的认识和理解上,应突出它的作用,引导学生观察、发现,由于这种特殊的线段,把多
边形分割成了最基本的xxx形——三角形,目的是为多边形内角和公式的推导埋下伏笔。
(2)知识探究
为了加深对概念的理解,领会其运用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这一部分,我采取以下两个探究活动充分调动全体学生主动探索多边形的内角和公式:
探究活动1:多边形的对角线
先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。
思考并分小组讨论以下两个问题:
①从多边形的一个顶点出发能画出几条对角线?
②这样的画法把多边形分成了多少个三角形?
因为多边形内角和公式的推导就是从对角线和三角形入手的,因此,这两个问题就显得尤其重要。引导学生回想课前引入的过程, xxx形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。
探究活动2:多边形的内角和
这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?
四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是2×180°……在肯定正确的答案和各种想法的同时,让学生寻找出最优办法。
《多边形的内角和》说课稿 8
一、说教材
《多边形内角和》是北师大版八年级下册第六章第四节的内容,多边形内角和公式反映了多边形的要素之一—“角”之间的数量关系,它是多边形的基本性质。多边形内角和公式是三角形内角和定理的应用、推广、深化,它源于三角形内角和定理又包含三角形内角和定理。多边形内角和公式为多边形外角和公式、四边形及正多边形的有关角的学习提供知识基础。
二、说学情
接下来,我来谈谈我班学生情况。他们对于知识具有较好的理解能力和应用能力,喜欢合作探讨式学习,对数学学习有较浓厚的兴趣。在以往的学习中,学生的动手能力已经得到了一定的训练,本节课将进一步培养学生这些方面的能力。
三、教学目标
教学目标是教学活动实施的方向、和预期达到的结果、是一切教学活动的出发点和归宿,我精心设计了如下的教学目标:
【知识与技能】
掌握多边形内角和公式,并能够运用公式正确的求出多边形的内角和。
【过程与方法】
通过对“多边形内角和公式”的探究,提析问题、解决问题的能力,同时充分领会数学转化思想。
【情感态度与价值观】
通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。
四、教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
【重点】
探究多边形内角和的公式。
【难点】
多边形内角和公式的推导过程。
五、教学方法
根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
六、教学过程
教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:
(一)导入新课
在这一环节,我会在通过PPT呈现我周末逛广场的时候发现的广场中心是一个五边形,这个五边形的内角和到底是多少度来引出今天的课题。再通过出示三角形、四边形、五边形以及混合图形,以及通过问题“三角形的内角和是多少度”让学生回忆三角形的内角和为180°。紧接着抛出疑问“四边形的内角和是多少度?五边形、六边形……n边形呢?多边形的内角和与三角形的内角和会不会有什么关系呢?”以此引发学生的思考,由此引出课题:多边形的.内角和
(设计意图:在这一环节,通过PPT呈现图形以及引导学生回顾三角形的内角和为180°,帮助学生建立起多边形内角和与三角形内角和的联系性。)
(二)探究新知
1、探索四边形、五边形、六边形的内角和
在这一环节,我会请学生在练习本上先画出一个长方形或正方形,再随意画出一个四边形。并思考这样一个问题:正方形、长方形的内角和都等于360°,那么,任意一个四边形的内角和是否等于360°呢?你能证明你的结论吗?让学生先自己思考,再以同桌之间为一个小组讨论任意一个四边形内角和的求解过程。在这期间,我也会适时引导学生分析问题解决的思路——如何利用三角形的内角和求出四边形的内角和。进而发现:只需要连接一条对角线,即将一个四边形分割为两个三角形。将四边形的内角和问题转化为两个三角形所有内角和的问题。之后我会让学生类比任意四边形内角和的探究过程去探索五边形、六边形的内角和。学生先独立思考,再以前后两桌4人为一个小组进行讨论,然后请一两个小组的代表汇报解题思路和结果。学生通过类比四边形内角和的研究过程,将会得出:从五边形的一个顶点出发可以作两条对角线,从六边形的一个顶点出发可以作三条对角线。分别得到三个三角形和四个三角形,所以五边形和六边形的内角和分别是这时我也会从顶点和边两个角度说明为什么五边形、六边形会少了两个三角形。因为所取顶点与相邻的两个顶点无法连成对角线、所取顶点与它所在的两条边不能构成三角形。
(设计意图:本环节引导学生动手操作、动脑思考、小组讨论,从四边形到五边形再到六边形,以知识迁移的方式进一步体会将多边形分割成几个三角形的化归过程。也进一步明确了边数、对角线条数、三角形数对多边形内角和的影响,为从具体的多边形抽象到一般的n边形的内角和的研究奠定基础。)
2、探索并证明n边形的内角和公式
在这一环节,我会要求学生从四边形、五边形、六边形的内角和的研究过程中观察思考、总结归纳出多边形的内角和与边数的关系,并证明所发现的结论。在学生独立思考后,大部分同学将能回答出n边形的内角和等于(n—2)X180°,随后我会与学生一同分析证明思路:从n边形的一个顶点出发,可以作(n—3)条对角线,它们将n边形分成(n—2)个三角形,这(n—2)个三角形的内角和就是n边形的内角和,所以n边形的内角和等于(n—2)X180°。紧接着我会学生填一个表格,表格里要求学生填出四边形、五边形、六边形到n边形它们所对应的从某顶点出发的对角线数、三角形数和内角和。以此帮助学生得出规律:多边形的边数增加1,内角和就增加180°。
(设计意图:这一环节让学生体会从具体到抽象的研究问题的方法,感悟回归思想的作用。而表格的填写,能帮助学生回顾n边形内角和的探索思路。)
(三)深化新知
在以这一环节,我会用多媒体课件展示一道例题:如果一个四边形的对角互补,那么另一组对角有什么关系?
让学生画出图形,并根据图形将文字语言翻译成符号语言,明确题中已知∠A+∠C=180°,所求的是∠B+∠D的度数,让学生独立完成解题过程后,我会引导学生得出结论:如果四边形的一组对角互补,那么另一组对角也互补。
(四)巩固提高
在这一环节,我会口头说出两道题:
1、求八边形的内角和是多少度?
2、已知一个多边形的所有内角都是120°,则这个多边形是几边形?让学生独立完成并回答。
(设计意图:口头描述的题目的设计,是为了让学生从正反两个方面运用多边形内角和的公式,解决与多边形内角和有关的简单计算问题。)
(五)小结作业
在小结环节,我会让学生回答以下三个问题:
(1)本节课学习了哪些主要内容?
(2)我们是怎样得到多边形内角和公式的?
(3)在探究多边形内角和公式的过程中,连接对角线起到什么作用?
(设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获,通过建立知识之间的联系,凸显将复杂图形转化为简单图形的基本单元的化归思想,强调从特殊到一般地研究问题的方法。)
而作业环节,我会要求学生在复习多边形内角和知识的基础上,做好多边形外角和知识的预习工作。
(设计意图:学生通过课前的预习,能对新知识有一个初步的理解,对新知识学习的顺利进行有着促进的作用。)
七、板书设计
为了体现教材中的知识点,以便于学生能够理解掌握,我采用图表式的板书,这就是我的板书设计。
《多边形的内角和》说课稿 9
各位评委、各位老师:
大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。
2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。
二、教学目标分析
1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。
2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。
3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。
四、教学程序设计
1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感
2、教学过程
互动环节互动内容设计意图1创设情境引入新课
(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?
(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。
这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。
2合作交流探索新知
(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?
(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?
(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。
(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。
学生可能找到以下几种方法:
①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;
②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;
③“分”—即通过添加辅助线的方法,把四边形分割成三角形。
教师在学生展示完后提问:
①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?
②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?
先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。
从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。
3自主探究得出结论
(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?
学生先独立思考,分组讨论,然后再叙述结论。
(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。
4应用新知尝试练习
(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。
(2)算一算
①教材89页练习1、2。
②四边形的外角和等于多少度?
③五边形的外角和,六边形以及n边形的外角和呢?
(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。
5归纳总结形成体系我从以下几个方面引导学生进行小结:
(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?
(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的`收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。
6分组竞赛升华情感
我制作了A、B、C、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。
在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。
五、评价分析
1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。
2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。
六、设计说明
1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。
2、关于教材处理本教案设计时,我对教材作了如下改变:
①将教材例1作为练习中的“想一想”,由学生自已尝试解答;
②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。
③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!
《多边形的内角和》说课稿 10
今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。
一、教材分析
《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。
二、学情分析
1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。
2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。
三、教学目标分析
根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。
【知识与技能】
认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的'实际问题。
【数学思考】
学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。
【问题解决】
通过探索多边形的内角和获得分析问题和解决问题的一些基本方法,并体验解决问题方法的多样性,发展创新意识,渗透转化思想在数学学习中的应用。
【情感态度】
在数学学习过程中,体验学习的快乐、获得成功的喜悦,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。
【教学重点】探索多边形的内角和公式。
【教学难点】探究多边形内角和时,如何把多边形转化成三角形。
四、教法和学法分析
在这节课的教学中我结合了学生的实际情况和教学目标,借鉴了美国教育学家杜威的“做中学”的教育理论,运用了如下的教学方法。
1.教学方法:
根据新课成标准,教师教学应该以学生的认知发展水平和已有的经验为基础、面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想和方法,获得基本的数学活动经验。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,合作者,而学生才是学习的主体。
2.学习方法:
学生的学习应当是一个生动活泼的、主动的和富有个性的过程。所以利用学生的好奇心设疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,在学生在经历观察、实验、猜测、推理、验证等活动过程中,体会了数学学习方法,体验到了自主探索和合作交流快乐,更好更准确的理解和掌握了本节课的内容。
五、教学流程
环节一:创设情景、引入新课
问题情景:将一张正方形卡片剪一刀,剩下的卡片是什么图形呢?
做一做:让学生拿出准备好的纸片和剪刀动手操作,并让学生展示自己剪出的图形。学生展示以下几种图形?(图)同时老师指出这些图形就是我们今天要研究的多边形。(意图是:通过动手操作,激发了学生的兴趣,学生体会到了图形之间具有一定的联系,顺理成章引出本节课的学习内容,符合学生的心里特征和认知规律,调动学生积极性,发展学生的创新意识。为整堂课的学习打下了基础)然后让学生自学多边形的定义,边,[X10]顶点,对角线,和内角,外角的概念以及凸多形的知识。
问题:三角形内角和是多少?(设计这个问题的目的是:因为探索多边形内角和的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。),那么我们剪出的图形内角和是多少呢?与三角形有什么联系呢?(设计这个问题的目的是:使学生的兴趣转化为期待,进入下一个环节。)
环节二、动手操作、激发欲望
活动1:做一做:让学生用剪出的多边形纸片探四边形内角和。
(这一个环节我采取了小组合作的方式,给了学生充分的探究时间,鼓励学生积极参与,合作交流,学生在探究过程中采用了测量、拼图、折纸和做辅助线等多种方法,同时告诉学生测量、剪拼等活动可能会产生误差,由此让学生感觉到做辅助线在解决几何问题中的必要性。)
针对不同层次的学生,,适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割方法,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生自己到黑板上展示自己的解决办法[X14]。
想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、边上、顶点处。同时指出求多边形的内角和的方法[X15]是一样的,都是把多边形转化为三角形。
(这些活动的设计意图是:让学生通过猜想、动手操作、合作交流等数学活动获得知识,真正体会“做中学”的快乐,激发学生的学习兴趣、调动学生积极性、引发学生的数学思考,鼓励学生的的创造性思维,培养学生良好的数学学习习惯,并让学生在学习过程中,体验获得成功的乐趣,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。)
活动2:让学生利用方法1填表:
多边形的边数
图形
能分成三角形的个数
多边形的内角和
首先让学生找出多边形的边数与分成三角形的个数有什么关系?然后再让学生找出多边形的内角和与边数的关系,进而得到n边形内角和定理:(n-2)·180°
(设计意图是:因为学生不熟悉完全归纳法,所以我采取了利用表格提出问题引导学生完成内角和定理的归纳,这样更具有条理性。并能够培养学生归纳问题的能力)。然后让学生猜一猜四边形、五边形以及多边形的外角和呢?有了求三角形外角和的经验,学生很快得出了结论。进而得到三角形外角和定理:多边形的外角和是360°
(在教学过程中并没有告诉学生结论,而是采用让学生探索归纳、化未知为已知,自己去尝试从而培养学生的创新能力。)
环节三:巩固新知、知识共享
例题展示:
例1:求八边形的内角和的度数。
例2:一个正多边形的一个内角为150°,你知道它是几边形吗?
例3:一个多边形的内角和等于它的外角和的3倍,它是几边形?(设计这些例题的目的是巩固和应用内角和与外角和公式)
小试牛刀(这里利用学生喜欢竞赛的特征,我采用了分组展示,分组计分的形式,这样能够激发学生的学习兴趣,并能培养学生的合作意识和团队精神)
(1)一个多边形内角和是900°,它是边形
(2)十二边形的内角和等于度。
(3)一个多边形的每个外角都等于60°,它是边形。
环节四:回归情景、能力提升
将一个六边形截去一个三角形后,内角和是多少呢?这一环节我仍然采用的小组合作的形式,让学生动手画图,合作交流,分组展示。
(学生通过课前的动手活动对问题情景中的问题已经得到解决办法,类比四边形学生通过动手操作,合作交流,互相验证得出六边形的解决方法,设计这道题的意图是:渗透类比思想在数学学习中的运用,体会数学学习方法的重要性。)
环节五:畅所欲言、分享成果
请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,通过这个环节使学生这节课所学的知识系统化。
最后用多媒体展示多边形图片结束本节课。(目的是让学生感受现实中多边形的丰富多彩和给我们的生活带来的美感)
【《多边形的内角和》说课稿】相关文章:
三角形的内角和教学反思05-25
高中音乐鉴赏《丝竹相和》说课稿05-25
《认识长方形和正方形》说课稿06-01
高中生物说课稿:《基因突变和基因重组》07-05
《跳水》说课稿05-04
《画》说课稿02-18
《变量与常量》说课稿05-25
《杨氏之子》说课稿06-01