3的倍数特征教学反思
作为一名优秀的教师,我们的任务之一就是课堂教学,对学到的教学新方法,我们可以记录在教学反思中,那么什么样的教学反思才是好的呢?下面是小编收集整理的3的倍数特征教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
3的倍数特征教学反思1
在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。
一、跨年级学习新数学知识,知识衔接不上,不符合学生的认知规律。
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
二、为了体现“容量大”,教学延堂。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的'倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。
三、学生合作学习的效果较好,但展示未体现立体式。
高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
3的倍数特征教学反思2
《2、5、3倍数的特征练习课》是一堂练习课,本节课是在学生已经学习了2,5,3倍数的特征的基础上进行教学的。为以后学习分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学习2,5的倍数特征仅仅体现在个位数上,到学习3的`倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。
如果只是单一的做习题,势必有学生会感到枯燥无味,这样子学生的学习效果难以保障,对教师的功底与教学策略有很大的挑战。因此课堂伊始,我直接开门见山式的先对前面学习的知识进行复习梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的学习兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练习巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练习课不仅仅只是做练习,让学生能在练习中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。
3的倍数特征教学反思3
今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的.倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。
3的倍数特征教学反思4
《3的倍数特征》进行了两次教学授课,第一次是新授,第二次是录课重复授课。下面就本节课前后两次上课进行如下反思:第一次上课,采用游戏的方式引入,提前给学生编号,根据编号做游戏。由于每个学生的编号不一样,所以在做游戏的时候,每个学生集中注意力,倾听游戏要求,激发了学生的学习兴趣。设置游戏的目的是复习2或5倍数的特征,同时,对3的倍数特征的学习产生求知欲。接下来是采用提出猜想,举出个例否定猜想来过渡。让学生充分地认识到依据2或5的倍数特征的思想已经行不通了,从而开始新的探索。在探索过程中借助“百数表”,让学生独立地圈出3的倍数,圈完后互相交流3的倍数的个位有什么特点,再次否定了之前的思维定式。由于个位上没有特点,所以引导学生从其他的角度观察,学生能想到横着观察、竖着观察,但对于斜着观察不能很好的发现,所以本节课中我关注到学生的思考困境,引导学生从斜着观察的角度思考探索。当学生斜着观察时能发现个位上的数字依次减1,十位上的数字依次加1,适时提出“什么是没有变的?”问题一提出,学生恍然大悟,发现:个位和十位上的数的和没有变!顺其自然的知道了3的倍数具有这样规律。经过研究每一斜行发现:个位和十位上的数的和不变,都是3的倍数。知道了这个规律后,下面开始延伸这个规律。一方面:验证百数表内其他不是3的倍数是否具有这个规律?另一方面:比100大的数,三位数、四位数、五位数等是否具有这个规律?通过两方面的`验证,再次强调了这个规律是普遍存在的,而这时3的倍数特征已经归结为:一个数各位上的数的和是3的倍数,这个数就是3的倍数。知道了3的倍数特征之后通过练习巩固加强,练习的设计是三道题,这三道题设计为不同的层次,第一题是基础题,第二题是拔高题,第三题是解决问题。通过做题发现学生本节课掌握得不错。最后,对本节课的知识进行了延伸,通过出示课本第13页“你知道吗?”,让学生明白为什么2或5的倍数特征只看个位就可以了,而3的倍数特征需要看所有数位。从而达到学知识不但要知其然还要知其所以然。整个教学过程中,学生能在猜想、操作、验证、交流、归纳的数学活动中获得丰富的数学经验,同时这也有利于学生创造力的培养。通过本节课的教学以及学生的掌握情况,最终检测本节课的目标较好的达成。但反思这节课的不足,我觉得在每个环节上的过渡应该更加的自然。另外,在小组讨论的时候应多关注学生的交流,对学生进行适时地指导。基于第一节课的优点和不足,进行了第二次的授课即录课。由于学生们已经学习了过本节课,所以对于学生们来说已经是旧知识。要把旧知识重新来讲,如果照搬之前的授课方式已经远远不够了。如何更改,这给我提出来一个新的问题。为此,这节课我做了适当的调整。本节课我更多关注的是数学方法和思维方式的培养。其中体现在:
1、学生在举例验证猜想的时候,让学生体会反例的作用,如果有一个反例的存在,就说明猜想的结论是错误的。
2、在探索3的倍数特征时,对于100以内3的倍数,应如何着手验证,怎么选取数来验证,这一环节让学生体会:在研究规律的时候,优先选择数比较多的这一组,让学生明白如果有规律更容易探索和发现。
3、在拓展规律的时候,采用举了大量的数据,证明了规律的普遍存在,让学生体会规律的适用范围。
4、在做练习的时候,第2小题,关注学生思考问题是否全面,关注学生的思考过程。
5、练习的第3小题,一道解决问题的题目,通过让学生读题、审题、分析题之后,再思考。这一道题学生展示了多种的做题方法,体现了方法的多样性,同时也说明学生的思维是活跃的。本节课中的不足,练习中第3题学生的做法没有完全的在黑板上板书,另外,本节课中学生会超前说出所有问题的答案,使得教师略显失措,我觉得这是因为我备学生还不够。在今后的教学中,我会改进自己的不足。我将更深入地研究教材、钻研教法,不断提高自己的教学水平,设计出学生更能接受和喜欢的课。
3的倍数特征教学反思5
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
我从学生的已有认知出发,引导学生先进行合理的猜想,进而引发学生从不同的角度验证自己的猜想,通过验证,学生自我否定了自己的猜想。此时学生处于“不愤不启”的最佳的学习状态,他们迫切想知道3的倍数的特征究竟是什么?这样来调动学生学习的'欲望,增强学生主动探究意识,有利于后面的探究学习。他们还认为在我们实际生活中,当你解决一个新问题时,一般没有人告诉你解决这个问题会碰到什么困难。你只有碰到问题后,在解决问题的过程中方才清楚还需要哪些知识,然后,你要在原来的知识库中去提取并灵活地应用原有的知识。
新课堂呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因为课堂是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
3的倍数特征教学反思6
《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。
在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的`特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。
这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。
希望以后自己的教学会更扎实起来。
3的倍数特征教学反思7
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的.倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果
《3的倍数的特征》教学反思
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
3的倍数特征教学反思8
《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:
教学片段一:
让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右
老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。
师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。
(结束)学生回答。
生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数
吗?(学生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一样)
师:你分类的标准是什么?
生2:个位是0——9的都归为一类,共两类。
生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。
师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)
师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)
以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。
教学片段二:
师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)
师:谁来介绍自己新的分类方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
师:你的分类标准是什么?
生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。
师:谁来帮他“以此类推”?
生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。
生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。
师:你能用一句话来表达吗?
生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。
生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。
师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍数,105也是3的倍数。
生5:1加1加1等于3,3是3的倍数,111也是3的倍数。
……
(一个学生根据规律回答,其他学生用竖式验证。)
生6:3的倍数的特征是找到了,但这样的分类太乱。我一共分3类:
第一类:每个数数位上的数字的和是3:3、12、21、30;
第二类:每个数数位上的数字的和是6:6、15、24、42、51;
第三类:每个数数位上的数字的.和是9:9、18、27、36、45……,
这样的数是3的倍数。
师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的倍数没有超出这三类的。
师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)
师:谁能用几句话来概括?
生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。
师:真佩服你们!
第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。
学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。
从本节课中,我有几点小小的感悟:
一、教师不要害怕学生探究的失败。学生第一次探究的失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。
二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3的倍数的概括(一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。),尽管实际的意义不是很大,但是它更具有横向的关联,2的倍数特征是:个位是0、2、4、6、8的数是2的倍数;5的倍数的特征是个位是0或5的数是5的倍数。或许,这种类比联想更容易让学生理解新的知识,更何况是学生自己探究出来的。其实很多教学内容我们都可以让学生进行探究,关键是教师如何给学生提供一个探究的载体,一种探究的环境。
三、教师对学过的知识要经常地进行整合。新教材的特点是有些知识点分得比较散,所以教师要经常把学生学过的知识,在新知中不知不觉地再应用,再巩固。温故而知新,在复习与巩固中,学生会对旧知有更高的认识,更深的理解,也容易排除学生对新知的畏难思想。同时要经常地对各种知识进行串联,编织学生知识的网络,使学生认识到各种知识之间是相互关联相互作用的,以利于学生解决一些实际问题或综合性问题。
四、教师要经常在教学中渗透一些数学思想。分类是一种数学思想,同时也是一种数学思维的工具。人教版小学数学第一册学生就接触了分类《整理房间》,第七册《角的分类》、第八册《三角形的分类》,让学生对分类有了更多的理解。其实在生活中,无处不在的分类:超市货物的摆放、自己书本的整理、性别之间、班级之间等等。对于分类的标准,分类的原则,学生在不知不觉中有了感悟。借助分类,有40%的学生找到了3的倍数的特征,学生完全是在观察、尝试、验证的基础上探究的,是自主的行为研究。在小学数学中,渗透了很多数学思想,如集合、对应、假设、比较、类比、转化、分类、统计思想等,在教学中合理地运用这些数学思想,对学生学习数学的影响是深远的,也会让我们的数学探究活动更有意义,更有价值。
3的倍数特征教学反思9
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的.特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。
这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。
3的倍数特征教学反思10
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
新的课程理念要求我们在教学中尽可能地为学生提供一个自主、合作、探究机会,其宗旨也就在于培养学生在实际的学习活动中,善于发现问题和提出问题的能力,灵活运用知识去解决问题的能力,在研究和解决问题的过程中学会合作。3的倍数的特征,有规律可循,容易上成机械刻板、枯燥无味的课,学生虽能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计采用了启发与发现相结合的教学方法,激励学生大胆猜想,动手实践,去发现规律,形成技能,升华至应用于生活。
本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。当然,培养学生的创造个性,仅仅停留在教学活动的情境上是不够的,教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的`创新欲望,学生的创造意识才能得以培养,个性才能充分发展。本课重点是要理解3的倍数特征,能够准确判断一个数是不是3的倍数。我采用的是复习导入,先和学生们一起回忆了一下
2、5的倍数特征,然后出示本课的教学目标。新授环节先让学生猜测一下3的倍数会有哪些特征呢?接着采用数形结合的方法,学生动手操作,在1~100的数字卡里找一找3的倍数,然后用自己喜欢的符号圈起来,然后观察小组讨论汇报。发现3的倍数特征不像
2、5的倍数特征一样,看一个数的末尾了,引导学生是不是要看这个数其它的数位上的数呢?学生发现也不是很难。教材中有提示,学生回家预习后也会清楚叙述出3的倍数特征是一个数各个数位上数字相加的和。找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。
3的倍数特征教学反思11
“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的'喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,
3的倍数特征教学反思12
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的`负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
3的倍数特征教学反思13
3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预习题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的和都是3的倍数吗?
新课时让学生从上面的练习中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的'数字和是3的倍数,这个数就是3的倍数
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
3的倍数特征教学反思14
站在跳板上学习数学——3的倍数的特征教学反思
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展 。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的.角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
3的倍数特征教学反思15
本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的`倍数,但马上就被其他同学推翻了。
然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的和,发现珠子的颗数正好是3的倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。
“想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。
【3的倍数特征教学反思】相关文章:
《3的倍数特征》教学反思04-11
《3的倍数的特征》教学反思04-11
3的倍数的特征教学反思09-13
25的倍数的特征的教学反思11-23
《3的倍数的特征》教学反思(通用15篇)03-21
《2,5的倍数的特征》的 教学反思09-23
《2和5的倍数的特征》教学反思范文09-22
2和5的倍数特征教学反思范文10-06
2、5倍数的特征教学反思08-17