圆锥的体积教学反思

时间:2022-12-23 08:49:07 教学反思 我要投稿

圆锥的体积教学反思

  作为一名人民老师,我们的工作之一就是课堂教学,教学的心得体会可以总结在教学反思中,那么写教学反思需要注意哪些问题呢?以下是小编整理的圆锥的体积教学反思,欢迎阅读与收藏。

圆锥的体积教学反思

圆锥的体积教学反思1

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的.底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

圆锥的体积教学反思2

  (1)

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

  让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

  出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的'。这也证明了学生是有着各自不同的思维方式的。

  (2)

  《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  (3)

  一节课下来,我静心思考,有以下几点反思:

  1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  2、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

圆锥的体积教学反思3

  最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:

  1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

  2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的'长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

  3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算

  方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

  4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

  从教学层面上讲,我觉得要注意这么几点:

  1、让学生经历知识的生成,理解公式的由来。

  2、熟记相关公式和一些常见数据,提高计算的正确率和速度。

  3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。

圆锥的体积教学反思4

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的'试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

圆锥的体积教学反思5

  在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

  《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的.应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

圆锥的体积教学反思6

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

  再上这节课时,我加强了以下几个点的教学,收到了较好的效果。

  1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的'过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

  4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算3.14×32。又如:×3.14×(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算3.14×12。这样就大大地减少了学生计算难度,提高了计算的正确率。

圆锥的体积教学反思7

以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

  为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的'眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

  在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

  本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

圆锥的体积教学反思8

  上完《圆锥的体积》这节课,我反思了整堂课的教学,总的来说,上下来还是可以,通过学生大胆猜测圆锥的体积可能和什么形状的物体有关引入科学验证,然学生在两次倒水的过程中发现等底等高的圆柱与圆锥体积间的关系,由此引出圆锥的的体积公式V=Sh÷3,在整个教学过程中,我非常注重让学生参与教学的全过程,毕竟学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,验证自己的猜想,整个过程注重实事求是,认真分析自己的实验结论,培养了学生科学的实验观。教学中“圆锥的体积是圆柱的1/3,它们一定等底等高”这个环节我没有预先设计的,它是课堂中随机生成的',却让学生增加了知识,通过学生的举例子,学生能发现当当圆柱和圆锥的底面积和高交叉相等时,圆锥的体积也是圆柱体的三分之一,因此这句话是错的。总而言之,这节课每个学生都经历了“猜想---实验---发现”的环节,不仅让学生获取了新知,也让学生体会到探索成功的乐趣。

  但课后反应的的作业情况来看,学生基本理解了圆锥的体积,但在计算时却经常忘记除以3。一些学习困难的学生对于稍微需要灵活判断的题目还是不能有较好地把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面,知识死记公式,不能灵活应用。

圆锥的体积教学反思9

  在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

  一、 让学生经历猜想—实验—验证—结论的实践探索的全过程。

  新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。

  二、给学生一个“合作交流、自主探究”的空间。

  新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。书学者们课程,不但需要观察,还需要试验。有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。

  在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的教学方式。学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。教师只是学习的组织者、引导者与合作者,是平等中的首席。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的`喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  三、让学生在学习中体验数学的应用价值

  人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,,而变得更精彩。

圆锥的体积教学反思10

  在评教评学中我所讲的内容是《圆锥的体积》,是学生在掌握了圆锥的认识和圆柱的体积的基础上进行的。教学时我先让学生回顾上一节学过的内容,再让学生大胆的猜想圆锥的'体积公式。然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,或圆柱的体积是等底等高圆锥体积的3倍。

  并能运用这个关系计算圆锥的体积。本节课我重点让学生动手实验探究充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并记录下整个实验过程和发现的结果。在汇报时,由于准备的材料不同,范耀君同学的小组和郝子龙小组发生了争论,也是本课要解决的重点问题,我及时抓住这一个环节,引导学生得出必须在等底等高的条件下,从而推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。

  在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识。遗憾的是学生动手实验时,占据了较长的时间,以至练习的时间不多,没有达到充分的巩固。在以后的教学中要合理的安排和调控好课堂,使学生有充分发挥的空间。

圆锥的体积教学反思11

  1、通过课堂评价促进小组探究学习的有效性

  我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动 体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到 过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。

  2、层次清楚,步步深入,重点突出

  在教学圆锥的体积时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动 手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公 式解决生活中的实际问题,加深学生印象。

  3、激发学生的求知欲

  新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  4、全体学生的积极参与,突出学生的主体作用

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  5、课堂教学后的'改进

  关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。

  在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学 生都有预习,圆锥体积是圆柱体积的三分之一很快从学生口中脱出。那我们就来做个试验验证一下!我给六个小组分别准备了等底等高、等底不等高、等高 不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,我们做的正好是三分之一、怎么回事?我们的是二分之一?, 我们的是四分之一是不是书上写错了?学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,等底等高这一 前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆 心地强调等底等高,对三分之一的认识也深入学生之心,圆锥体积计算漏乘三分之一的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利 用错误这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生 学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验, 这样,我们的课堂才是学生成长和体验成功的乐园!

圆锥的体积教学反思12

  教学过程

  一、复习旧知,铺垫孕伏

  1、(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

  2、复习高的概念。

  (1)什么叫圆锥的高?

  (2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  评析:

  圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

  二、创设情境,引发猜想

  1、 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2、 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。

  评析:

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

  三、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1、小组实验。

  (1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

  (2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

  2、大组交流。

  (1)组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

  ①圆柱的体积正好是圆锥体积的3倍。

  ②圆柱的体积不是圆锥体积的3倍。

  ③圆柱的体积正好是圆锥体积的8倍。

  ④圆柱的体积正好是圆锥体积的5倍。

  ⑤圆柱的体积是等底等高的圆锥体积的3倍。

  ⑥圆锥的体积是等底等高的圆柱体积的1/3。

  ……

  (2)引导整理信息。

  指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  (3)参与处理信息。

  围绕3倍关系的情况讨论:

  ①请这几个小组同学说出他们是怎样通过实验得出这一结论的?

  ②哪个小组得出的结论更加科学合理一些?

  圆锥的体积是等底等高的圆柱体积的1/3。

  (突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

  ③引导学生自主修正另外两个结论。

  3、诱导反思。

  (1)为什么有两个小组实验的结果不是3倍关系呢?

  (2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

  4、推导公式。

  尝试运用信息推导圆锥的体积计算公式。

  (1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  5、问题解决。

  童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

  评析:

  圆锥体积公式的推导,教师敢于大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。

  四、运用公式,解决问题

  1、教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

  2、学生尝试行算,指名板演,集体订正。

  3、引导小结:不要漏乘1/3;计算时,能约分时要先约分。

  五、巩固练习,拓展深化(略)

  六、质疑问难,总结升华

  通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

  回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示、

  总评

  1、摸得清,考虑周。教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。设计教案时,能充分估计教学过程的复杂性,考虑学生在课堂上可能发生的“意外情况”,以顺应学生的学习过程,力求构建一种非直线型的教学路径,这样的'教学设计思路值得提倡。

  2、理念新,设计巧。教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情境——狐狸和小白兔换雪糕,并把这一故事情节贯穿整节课的始终。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3、重建构,促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。多样化的数学活动,如实验、交流、反思、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

圆锥的体积教学反思13

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然,也有许多收获。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  一、 收获:

  1、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的.圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  (1) 、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先用实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  (2) 、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  (3) 、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  二、 不足:

  1、 许多学生在计算过程中常忘记除以3,需要加强训练。

  2、 实验教材数量有限,只能起到演示作用,学生成为被动的观看者,不能实现人人参与操作探究。

  (1)。这些实验设计在教学实践中也暴露出许多不足:这些实验设计都需要借助一定的中介,而根据小学生的认知特点,他们在比较体积关系时首先想到的是进行体积的直接对比,所以实验设计不符合学生思维的真实水平。

  (2)。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

圆锥的体积教学反思14

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利用以学生认识发展规律为依托 :发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在“认识—实践—再认识、再实践”中理解运用知识。反思教学过程,主要有以下几点体会:

  一、观察引导

  让学生观察用卷笔刀削铅笔,明白刚才那一截是圆柱体,现在这一截变成了圆锥体。启发学生:削成后的这一部分体积与原体积比较有无变化?学生回答是肯定的,削后体积变小了。变小了以后的圆锥体是原圆柱体的几分之几?也就是说圆锥体体积与圆柱体体积有什么联系?圆锥体体积公式如何推导?带着问题去看书。

  二、巧置陷阱

  学生看书后知道圆锥体体积等于等底等高圆柱体积的三分之一。但对“等底、等高”这个条件往往不注意。为了突出“等底、等高”这个条件的重要性,我巧置陷阱,让学生分组操作,(有一组的圆柱和圆锥体的容器不是等底等高的,有一组的圆柱和圆锥体的容器是等底等高的),去验证课本上的知识。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会儿,一个小组倒了3次水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。

  三、柳暗花明

  这时正是学生思维活动进入高潮时,我拿出等底等高的圆柱体和圆锥体两个容器,用圆锥体量水三次正好灌满圆柱体,引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。而在这样的过程中我放手让学生去想、去做,鼓励学生以多角度去思考问题。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  四、归纳总结

  刚才同学们发现圆锥体体积等于等底、等高圆柱体体积的,现在圆锥体体积公式如何推导?学生很容易得出:

  v圆锥体=sh÷3

  但在教学过程中我发现了几个值得我思考和改正的问题:

  1、在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多。

  2、有些学生在计算过程中常忘记除以3,需要加强练习。

  3、对学生的操作关注不够到位。

  采取的措施:

  1、培养学生养成良好的学习习惯,做题时认真仔细。

  2、上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。同时也会把时间更多的放在钻研教材上,把每一节课上得有声有色。

  《圆锥的体积》教学反思

  《数学课程标准》指出:“有效的.数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

  (1)密切数学与现实的联系,富有儿童情趣。

  学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米;最后,习题中又回归生活,延伸了课堂。

  (2)致力于改变学生的学习方式。

  在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。

  (3)学习过程中揭示了一般科学的研究方法。

  提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。

  纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。

圆锥的体积教学反思15

  (课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)

  教学片断

  师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。

  小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。

  师:请同学们利用手中的圆柱和圆锥、沙子,从倒的次数看,研究两者体积之间有怎样的关系?

  生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。

  生2:三次倒满,圆锥的体积是圆柱的三分之一。

  生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。

  ……

  师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看, 将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的.内容提出过疑问)

  学生议论纷纷。……

  师:你们说该怎么办?

  生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。

  师:什么情况下,圆锥的体积是圆柱的三分之一?

  生:等底等高。

  生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。

  案例反思

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.

【圆锥的体积教学反思】相关文章:

《圆锥的体积》教学反思04-03

《圆锥体积》教学反思04-02

《圆锥的体积练习课一》教学反思(精选22篇)03-10

圆锥的体积教案02-24

圆锥的认识教学反思09-20

《圆锥的认识》教学反思04-16

圆柱的体积教学反思 圆柱体体积的教学反思10-18

《圆锥的体积》数学教案优秀12-21

圆柱的体积教学反思04-02