- 相关推荐
《实数》第一课时的教学反思
本课的教学目标是要求学生了解无理数和实数的概念,知道实数与数轴上的点一一对应,并会进行实数分类,会判断一个数是有理数还是无理数。
从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要的意义。本节是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数。实数的理论比较深,本节只要求了解无理数和实数的意义,并会简单的识别就可以了。
本节的引入是一个探究活动,要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数或无限循环小数的形式。为了让学生通过自己的操作加深印象,通过更多的例子使规律更明显和具有说服力,在教学设计中,我特意设计了让每个学生另找5个不同分数化为小数的预习作业。在交流活动中有学生提出不是所有分数都能化为有限小数或无限循环小数,并例举出分数 。我当堂让学生用计算器验证,结果为0.123595505617978,没有出现循环。由于计算器显示屏位置有限,后面的数位无法显现,它究竟是否无限循环暂时无法验证,怎么办?有学生建议用电脑计算,可以讲小数点后数位取100或更多。由于课堂时间问题,我将这个验算作为作业要求学生课后完成。对于提出问题的蒋逸文同学,给予大力表扬,鼓励其他同学也要向他学习,不迷信书本,对发现的问题想办法解决,说不定推翻前人的结论,将来在我们的同学中出现数学家。同学们的热情高涨。课后几个同学想办法计算 ,发现用电脑也不行,于是和老师一起想了很多办法,终于算到 =0.123595505617977528089887640404494382022471910112359550517977528…,在小数点后第48位才出现循环,循环节有47位。我们又验证了其他一些分数,发现还有好多分数是在计算器中找不到循环节的,但最终通过计算也能证明他们是循环小数。
通过这个例子,我很感慨,在平时的教学中,很多东西我们直接灌输给学生,没有给他们探究思考的空间,多数学生也只好被动接受,印象不深刻,很难灵活运用。要培养学生的数学思想,应多讲知识形成发展的过程展示给学生,多给他们探究归纳的空间。
在学习无理数概念时,我为他们介绍了毕达哥拉斯学派的典故,介绍了毕氏门徒西帕索斯为为真理而献身的故事,介绍了数的产生及随着生产生活的需要而不断扩充的过程。这些典故能激发学生的学习兴趣和热情,但最好在课前作为预习作业让学生自己去搜索相关知识,在课堂上交流成果,这样效果会更好。
【《实数》第一课时的教学反思】相关文章:
《实数》各课时教学反思04-27
《实数》教学反思范文04-29
实数复习的教学反思(精选10篇)03-07
《实数的运算》教学反思(精选5篇)06-14
实数(第二课时) 教学设计05-02
Excel课时2教学反思04-28
《测量》第一课时教学反思范文04-28
《春天的雨点》第一课时教学反思04-30
孔子拜师第一课时教学反思04-28
《认识方向第一课时》教学反思04-30