八年级数学上册教案15篇(荐)
作为一名教学工作者,编写教案是必不可少的,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?下面是小编为大家整理的八年级数学上册教案,欢迎阅读,希望大家能够喜欢。
八年级数学上册教案1
1、已知任意RtΔABC,∠C = 90,再画RtΔABC,使∠C=∠C=90,AB=AB,BC=BC。把画好的RtΔABC剪下来,放到RtΔABC上,它们全等吗?
通过作图,发现这样所做的两个直角三角形完全重合在一起,由此可以得到结论:斜边和一条直角边分别相等的两个直角三角形_______,简写成“__________________”或“______”。
2、用数学语言表示两个直角三角形全等。
在RtΔABC与RtΔABC中
AB=AB
BC= ____
∴RtΔABC≌_________( )
直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:_________、_________、_________、_________、还有直角三角形特殊的判定方法 _________。
3、例题学习
如图,AC⊥BC,BD⊥AD,AC=BD。求证:BC=AD
1、两直角三角形,两直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
2、两直角三角形,斜边和一个锐角对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
3、两直角三角形,一个锐角、一条直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
4、两直角三角形全等的特殊条件是_________和__________对应相等。
5、(1)如图,∠ACB=∠ADB=90,要使ΔABC≌ΔBAD,还需增加一个什么条件?把增加的条件填在横线上,并在后面的括号填上判定全等的理由。
①________________( )
②________________( )
(2)如图所示,AC=AD,∠C=∠D=90,你能说明BC=BD吗?
6、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面的两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的'理由。
1、如图所示,有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC与∠DFE有什么关系?
2、如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,
若AB=CD,AF=CE,BD交AC于M点。(1)求证:MB=MD,ME=MF;(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。
四、
课后反思:_____________________________________________________。
八年级数学上册教案2
【教学目标】
1.了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学重难点】
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学过程】
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.
二、例题讲解
例1:当x为何值时,分式有意义.
【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
(补充)例2:当m为何值时,分式的'值为0?
(1);(2);(3).
【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获.
五、布置作业
课本128~129页练习.
八年级数学上册教案3
一、全章要点
1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
3、勾股定理的证明 常见方法如下:
方法一: , ,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为
大正方形面积为 所以
方法三: , ,化简得证
4、勾股数 记住常见的勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等
二、经典训练
(一)选择题:
1. 下列说法正确的是( )
A.若 a、b、c是△ABC的三边,则a2+b2=c2;
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;
C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;
D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.
2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A.121 B.120 C.90 D.不能确定
4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空题:
5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .
6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .
7.一个三角形三边之比是 ,则按角分类它是 三角形.
8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .
9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .
10. 一长方形的一边长为 ,面积为 ,那么它的一条对角线长是 .
三、综合发展:
11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的`长.
12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的高是多少?
13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?
15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?
16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?
八年级数学上册教案4
教学目标:
1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出两个图形关于某直线对称的对称点.
3.了解轴对称图形与两个图形关于某直线对称的区别和联系.
教学重点:
1、轴对称图形和两个图形成轴对称的概念;
2、探索轴对称的性质。
教学难点:
1、能够识别轴对称图形并找出它的`对称轴;
2、能运用其性质解答简单的几何问题。
教学方法启发诱导法
教具准备多媒体课件,剪刀,彩色纸
教学过程
一、情境导入
同学们,自古以来,对称图形被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称图形随处可见,对称给我们带来了美的感受!而轴对称是对称中很重要的一种,今天就让我们一起走进轴对称世界,探索它的秘密吧!
我们先来看一下这节课的学习目标
1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴,能找出两个图形关于某直线对称的对称点.
3.了解轴对称图形与两个图形关于某直线对称的区别和联系.
二、自主探究
【探究一】
(一)我们先来看几幅图片,观察它们都有些什么共同特征.
1、它们都是对称的.
2、它们沿着某条直线折叠后,直线两旁的部分能完全重合。
(二)动画展示蝴蝶的折叠过程
(三)做一做
1.准备一张纸;
2.对折纸;
3.用铅笔在纸上画出你喜欢的图案;
4.剪下你画的图案;
5.把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?
【答】能互相重合一模一样是对称的
从而得出轴对称图形的概念:
如果一个图形沿着一条直线折叠,只限两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们说这个图形关于这条直线对称。
八年级数学上册教案5
一、学生起点分析
通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.
二、教学任务分析
《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.
本节课的教学目标是:
①通过拼图活动,让学生感受客观世界中无理数的存在;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;
④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;
三、教学过程设计
本节课设计了6个教学环节:
第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.
效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的.“无理数“实例,让学生深刻感受“数不够用了”.
效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?
【释一释】:释1.满足 的 为什么不是整数?
释2.满足 的 为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣
效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段
2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数
2.只有两边长是有理数
3.只有一边长是有理数
4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足 的
解: (右2)
仿:在数轴上表示满足 的
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上
效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容:
1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
六、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
八年级数学上册教案6
一、创设情景,明确目标
多媒体展示:内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标
三角形的内角和
活动一:见教材P11“探究”.
展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.
小组讨论:有没有不同的证明方法?
反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的.和等于180°.
针对训练:见《学生用书》相应部分
三角形内角和定理的应用
活动二:见教材P12例1
展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?
小组讨论:三角形的内角和在解题时,如何灵活应用?
反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1.本节学习的数学知识是:三角形的内角和是180°.
2.三角形内角和定理的证明思路是什么?
3.数学思想是转化、数形结合.
《三角形综合应用》精讲精练
1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )
A.5 B.6 C.7 D.10
3.下列五种说法:①三角形的三个内角中至少有两个锐角;
②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).
《11.2与三角形有关的角》同步测试
4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?
(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?
八年级数学上册教案7
一、创设情景,明确目标
投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中。
请说一说你已经学习了三角形的哪些知识?
二、自主学习,指向目标
1、自学教材第1至3页。
2、学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标
三角形的概念表示方法及分类
活动一:阅读教材第1至2页内容,并思考以下问题:
(1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)
(2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)
(3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)
(4)三角形按边分可以分成几类?按角分呢?
展示点评:学生结合图形分别回答,师生共同点评。
小组讨论:三角形的概念,如何用符号表示及分类?
反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示。
针对训练:见《学生用书》相应部分。
三角形的三边关系
活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性。
展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段。
a、从xxBxx鯻xCxx
b、从xxBxx鯻xAxx鯻xCxx
从B沿边BC到C的路线长为xxBCxx。
从B沿边BA到A,从A沿C到C的路线长为xxAB+ACxx。
经过测量可以说xxAB+ACxx>xxBCxx,可以说这两条路线的长是xx不相等xx的
小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?
反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
针对训练:见《学生用书》相应部分
三角形有关知识的运用
活动三:见教材P3例题
小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?
展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论。
反思小结:当题目中的条件不明确时要分类讨论。所有的三角形必须要满足三边关系定理。
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1、概念:三角形,内角,边,顶点
2、符号语言。
3、三边关系。
4、角形的分类。
五、达标检测,反思目标
1、现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)
A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒
2、已知等腰三角形的两边长分别为3和6,则它的周长为(C)
A、9 B、12 C、15 D、12或15
3、已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为(B)
A、2 cm B、3 cm C、4 cm D、5 cm
4、若五条线段的'长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成xx3xx个三角形。若等腰三角形的两边长分别为3和7,则它的周长为xx17xx;若等腰三角形的两边长分别是3和4,则它的周长为xx10或11xx。
5、如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为xx25xcmxx。
6、工人师傅用35 cm长的铁丝围成一个等腰三角形铁架。
(1)若腰长是底边长的3倍,那么各边的长分别是多少?
(2)能围成有一边长为7 cm的等腰三角形吗?为什么?
《11。1。1三角形的边》同步练习题(含答案)
2、四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()
A、4 B、3 C、2 D、1
答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形。故选B。
3、已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为()
A、3 cm B6 、cm C、9 cm D、3 cm或6 cm
答案A当3 cm是等腰三角形的腰长时,底边长=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长= =4。5(cm),此时能组成三角形。∴底边长为3 cm,故选A。
《11.1与三角形有关的线段》同步测试(含答案解析)
2、一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是xx。
3、一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为xxx。
4、已知a,b,c是三角形的三边长。
(1)化简:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;
(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值。
八年级数学上册教案8
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)
明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本
1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习
(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的.图案,并在全班交流。
(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)
八年级数学上册教案(五)延伸拓展
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级数学上册教案9
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路点拨】根据完全平方式的`定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题.
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
八年级数学上册教案10
一.教学目标:
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二.重点、难点和难点的突破方法:
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式
3.难点的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的'方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三.例习题的意图分析:
1.教材P125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2.教材P154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五.例题的分析:
教材P154例1在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六.随堂练习:
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数1 2 3 4 5
段巍13 14 13 12 13
金志强10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
七.课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
选择小兵参加比赛。
八年级数学上册教案11
11.1 与三角形有关的线段
11.1.1 三角形的边
1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)
2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)
3.三角形在实际生活中的应用.(难点)
一、情境导入
出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.
教师利用多媒体演示三角形的形成过程,让学生观察.
问:你能不能给三角形下一个完整的定义?
二、合作探究
探究点一:三角形的概念
图中的锐角三角形有( )
A.2个
B.3个
C.4个
D.5个
解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的'个数有2+1=3(个).故选B.
方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.
探究点二:三角形的三边关系
【类型一】 判定三条线段能否组成三角形
以下列各组线段为边,能组成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.
方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.
【类型二】 判断三角形边的取值范围
一个三角形的三边长分别为4,7,x,那么x的取值范围是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.
方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.
【类型三】 等腰三角形的三边关系
已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.
解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.
解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.
方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.
【类型四】 三角形三边关系与绝对值的综合
若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.
解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.
三、板书设计
三角形的边
1.三角形的概念:
由不在同一直线上的三条线段首尾顺次相接所组成的图形.
2.三角形的三边关系:
两边之和大于第三边,两边之差小于第三边.
本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.
八年级数学上册教案12
教学目标:
理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.
教学重点与难点:
正确理解同底数幂的乘法法则以及适用范围.
教学过程:
一、回顾幂的相关知识
an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
二、创设情境,感觉新知
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
学生分析,总结结果
1012×103=()×(10×10×10)==1015.
通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的.乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
学生动手:
计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)
教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.
得到结论:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加
三、小结:
同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.
注意两点:
一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n
八年级数学上册教案13
教学目标:
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些事物是轴对称图形。
(3)能找出并画出轴对称图形的对称轴。
(4)通过实验,培养学生的抽象思维和空间想象能力。
(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些事物是轴对称图形。
教学难点:
根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。
教学过程:
一、认识对称物体
1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。
2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)
(但部分学生这时并不真正理解何为对称)
追问:对称?你是怎样理解对称的呢?
(可能的回答:两边是一样的)
像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?
(可能正确的回答:蝴蝶、蜻蜓……)
(可能错误的回答:剪刀)
若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。
二、认识对称图形
1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)
同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)
(师在“对称”后接着板书:图形)
2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——
(师在黑板上贴出图形)
边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。
这些图形都是对称的吗?(不是)
3、你们能给它们分分类吗?(能)谁愿意上来分一分?
你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)
问全班同学:你们同意吗?(同意)
你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)
好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。
4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)
你们所说的两边一样、两边重叠,也就是说对折后两边重合了。
(师板书:重合)(若有说出完全重合则板书:完全重合)
请将对折后的对称图形贴到黑板上,谢谢。
师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。
折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?
(有一点重合)
拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?
(可能的回答:这个全部重合了,这个没有)
这些对称的图形对折后全部重合了,也就是完全重合了!
(师在“重合”前板书:完全)而不对称图形只是部分重合。
好,谢谢你们,请将图形放这(不对称图形下黑板)
大家的.表现非常出色,奖励一下我们自己,来拍拍手吧!
“一——二——停!”我们的两只手掌现在是——
(生齐说:完全重合)
三、认识对称轴,对称轴的画法
同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?
1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?
(中间有一条折痕)
大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。
这条折痕所在的直线,有它独有的名称叫做“对称轴”。
(在“对称图形”前板书:轴)
像这样的图形,我们就把它们叫做“轴对称图形”。
(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)
现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。
谁来说说,怎样的图形是轴对称图形?
可以上来拿一个轴对称图形说。请学生用自己的语言说。
2、师拿一张轴对称图形,随便折两下。
这是一个轴对称图形吗?是的。师随便折两下。
谁来说说这个轴对称图形的对称轴是那条?
(一条都不是。)为什么?
只有对折后两边完全重合的折痕才是对称轴。
请你来折出它的对称轴。通常我们用点划线表示对称轴。
师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。
四、平面图形中的轴对称图形,及它们的对称轴各有几条。
1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?
(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)
同学们说的是否正确呢?用什么办法来证明?(对折)如果它是轴对称图形,那它有几条对称轴呢?
好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。
结论出来了吗?现在你的判断和刚才还是一样的吗?
3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:
这位同学既能给出判断结果,又能说出判断的理由,非常好。
看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。
能抓住轴对称图形的特征进行分析,不错!
也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……
圆有无数条对称轴。所有的圆都是轴对称图形。
讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。
(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)
4、用测量的方法找对称轴。
刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?
大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。
现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)
五、练习
1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)
问:国旗是轴对称图形吗?
产生冲突。说明:不但要观察外形,还要观察里面的图案。
2、判断国旗是否是轴对称图形。
3、找阿拉伯数字中的轴对称图形
4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。
选择一些贴到黑板上,最后出示“美”字。
总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。
八年级数学上册教案14
教学目标:
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件
教学过程:
一、 先复习轴对称图形的定义,以及轴对称的相关的性质:
1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________
2.轴对称的三个重要性质______________________________________________
_____________________________________________________________________
二、提出问题:
二、探索练习:
1. 提出问题:
如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?
吸引学生让学生有一种解决难点的想法。
2.分析问题:
分析图案:这个图案是由重要六个点构成的',要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可
问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`
在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:
1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
2. 试画出与线段AB关于直线L的线段
3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形
小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。
教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高
八年级数学上册教案15
教学设计
1、知识技能:
(1)会进行简单的二次根式的除法运算。
(2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算。
2、数学思考:在学习了二次根式乘法的.基础上进行总结对比,得出除法的运算法则。
3、 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题。
4、情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的
同步练习含答案解析
【考点】最简二次根式。
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是。
【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;
B、符合最简二次根式的条件;故本选项正确;
B、,被开方数里含有能开得尽方的因式x2;故本选项错误;
C、被开方数里含有分母;故本选项错误。
D、被开方数里含有能开得尽方的因式a2;故本选项错误;
故选;B。
【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式。
课时练习含答案
解答:选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故选B。
分析:正确运用二次根式除法运算法则进行计算,并能辨析运算的正误,是本节的教学难点,学生可以通过比较分析或正确计算加以判断。
【八年级数学上册教案】相关文章:
数学八年级上册教案03-02
初中数学八年级上册教案02-06
八年级上册数学函数教案03-09
八年级上册数学优秀教案01-23
八年级上册数学教案01-13
八年级数学上册教案02-27
数学八年级上册教案(15篇)03-02
数学八年级上册教案15篇03-02
八年级数学上册教案06-08
数学上册教案01-15