- 相关推荐
高二数学教案优秀
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?下面是小编收集整理的高二数学教案优秀,仅供参考,希望能够帮助到大家。
高二数学教案优秀1
【教材分析】
1、知识内容与结构分析
集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2、知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3、教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。
【教学目标】
1、知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2、过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3、情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1、教学重点:集合的基本概念与表示方法。
2、教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
【教学过程】
课前准备:
提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)
下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)
教与学的过程:
预设问题设计意图师生活动教师活动
一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)
学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的'定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。
可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。
即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。
(2)互异性:同一个集合中的元素是互不相同的。
(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。
高二数学教案优秀2
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
三、教学过程
(一)知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设=(x1,y1),=(x2,y2),则
+=-=λ=.
2.向量平行的坐标表示
设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;
(2)求满足=m+n的实数m,n;
练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),则m-n的值为
考点2平面向量共线的坐标表示
例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求实数k的值;
练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1.向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.
2.两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的'充要条件可以列出方程(组),求出未知数的值.
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为;的值为.
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于( )
【思考】两非零向量⊥的充要条件:·=0? .
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为( )
A.6B.7C.8D.9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..
五、课后作业(课后习题1、2题)
高二数学教案优秀3
教材分析:
本学期我任教(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:
1、注重基础:
“大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。
2、降低知识起点
多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。
3、增加较大的使用弹性
考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。
4、注重数学应用意识的培养
每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。
5、注重培养学生使用计算机工具的能力
在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术。
教材内容:
本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。
每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。
学生情况分析及教学对策:
(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的.学习中坚力量主要在一小部分的女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新
课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。
教学进度表
略
【高二数学教案优秀】相关文章:
高二数学教案01-05
高二数学教案04-20
人教版高二数学教案02-10
高二数学教案范文11-07
人教版高二数学教案范文09-29
高二数学教案14篇06-12
高中高二数学教案11-14
优秀高二作文11-10
高二优秀作文01-15