《方程的意义》教案

时间:2024-05-16 10:01:40 教案 我要投稿

《方程的意义》教案

  作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!下面是小编为大家整理的《方程的意义》教案,仅供参考,大家一起来看看吧。

《方程的意义》教案

《方程的意义》教案1

  教学内容: 教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、经历从生活情景到方程模型的建构过程。

  3、培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:使学生理解方程的含义,感受方程思想

  教学难点:使学生理解方程的含义,感受方程思想

  课前准备:天平、砝码

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

  2.演示:

  出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)

  师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?(演示)

  学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

  提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  3、出示例1

  说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

  (板书:含有等号的式子叫等式)

  二、引导分类,概括方程概念。

  1、学生自学

  要求:

  (1)学生在书上独立填写,用式子表示天平两边的质量关系。

  (2)小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  (3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  A、想一想你分类的标准是什么?

  B、把自己分类的情况,写在纸上?

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  2、概括概念

  过渡:看来同学们都能按自己的标准对式子进行分类。

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)

  B、你能说说什么叫方程吗?

  C、学生发言,概括出:“含有未知数的等式叫做方程”(板书)

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  3、举例方程、理解概念

  你能例举出方程吗?谁能举的与刚才不一样吗? (用字母Y表示、有难度的方程)

  以前我们见过方程吗?

  三、完成“试一试”、“练一练”

  1、“试一试”

  (1)观察左边的天平图,说说图中的是数量关系,列出方程。

  (2)观察右边的图,弄清题意,列出方程。

  1、练一练第1题

  (1)观察,找一找哪些是等式,哪些是方程?

  (2)交流:

  (3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

  (4)判断:方程是含有未知数X的等式。……..( )

  2、练一练第2题

  (1)先写一些方程

  (2)组织交流

  3、练一练第3题

  四、课堂作业:

  1、练习一第1题 先独立完成在交流

  2、练习一第2题

  (1)先说一说每题的`数量关系

  (2)独立列出方程

  (3)交流

  3、练习一第3题

  (1)说一说天平两边有什么物体,这些物体的质量间有什么关系

  (2)独立思考列出方程

  (3)观察方程,初步感知等式的性质。

  习题超市:

  1、讨论判断:下面的式子哪些是方程,哪些不是方程?

  8x=0 6x+2 4+2>10 2y÷5=10 n-5m = 15

  17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10 a÷8=60

  2、根据下面的信息,你能列处几个不同的方程?

  我比莉莉重25 kg,,我重61 kg。

  我186 cm。

  我身高x cm,我比爸爸矮40cm。

  我重y kg。

  板书设计及课后反思:

  方程的意义

  含有等号的式子叫等式

  X+50=100

  X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。

  教材简析:

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的安排有三个特点:

  第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

  一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

  在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

《方程的意义》教案2

  教学内容:课本第105~107页的内容,完成练习二十六的题目。

  教学目的:使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

  教具准备:天平、砝码、标有“20”、“30”和“?”的方木块。

  教学过程:

  一、复习。

  提问学生加、减、乘、除和部分间的关系。

  二、新授。

  1.方程的意义。

  (1)教学第(1)个例子。

  教师将天平、砝码摆在讲台上,然后,提出问题指名学生回答。

  讲台上摆着的上什么仪器?(天平)

  它是用来做什么的?(用来称物品的重量的。)

  你知道怎样用它称物品的重量吗?(在天平的左面盘内放置所称的物品,右面放置砝码。当天平两边平衡,即天平两端的重量相等。砝码所标的重量就是所称物品的重量。)

  在天平左面放一个50克的砝码,右面放标有20、30的木块。

  问:现在天平平衡吗?这说明了什么?(平衡,说明天平左右两边的重量相等)

  你能用一个式子表示这种情况吗?试试看!(根据学生发言,板书:20+30=50)

  问:这是一个什么式子?(等式)

  (2)教学第2个例子。

  教师改变天平上所放物品和砝码,使之同教科书第105页下图。

  问:现在天平也保持平衡,这说明什么?你能用式子表示这种平衡的情况吗?试试看!

  指名让学生试着写出等式。

  告诉学生:“?”是要求的未知数,我们学过一般未知数用字母X表示,所以这个等式可以写成:20+x=100。

  问:这是一个什么式子?(等式)

  比较一个这个等式与20+30=50有什么不同?(这是一个含有未知数的等式)

  这个x应该是多少克?(让学生自由说一说,教师总结:这里的'x所表示的未知数不是随便确定的,它必须使天平保持平衡的重量,也就是说未知数代表的数值必须使等号左右两边正好相等。在20+x=100的右边板书:x=80)

  (3)教学第(3)个例子。

  投影出示第106页的上图。

  问:看这幅图,这幅图的图意是什么?(这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是234元。)

  每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(3x)你能根据图意写出一个等式来吗?(3x=234)

  想一想,这个等式有什么特点?(这也是一个含有未数的等式。)

  当x等于多少时,这个等式中的等号左右两边正好相等?(x等于78时,在3x=234的右边板书:x=78)

  得出:像这样一些等式:20+x=100、3x=234、x-10=35、x÷12=5叫做方程。

  练习:下面的式子哪些是等式,哪些是方程。

  4+3x=106+2x7-x>317-8=9

  8x=018÷x=960÷12=5

  得出:

  17-8=94+3x=10

  60÷12=58x=0

  18÷x=9

  问:从幅图,你能说一说它的含义吗?

  教师引导学生得出:等式包括方程,等式的范围比方程的范围大;方程一定是等式,但等式不一定是方程。

  问:有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎样想?

  2.简易方程(一)。

  (1)教学例1。

  说明:我们把使方程左右两边相等的未知数的值,叫做方程的解。例如,x=80是方程20+x=100的解,x=78是方程3x=234的解。而求方程的解的过程叫做解方程。想一想:“方程的解”和“解方程”这两个概念之间有什么区别?

  (先让学生试着说一说,然后教师总结:方程的解指的是一个数,它表示未知数等于多少时使方程中等号左右两边相等。例如当x=80,20+x=100的等号左右两边相等。而解方程是指求这个未知数的演算过程。我们以前做过的一些求未知数x的题目,实际上说是解方程。)

  2.学习解方程的方法。

  出示例1:x-8=16

  讲解解方程的步骤及书写格式:

  先写“解”字;然后根据四则运算各部分间的关系及运算定律进行思考:x-8=16,就想被减数等于减数加差,所以x=16+8,x=24。运算的根据可以不写;每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。板书:

  x-8=16

  解:x=16+8

  x=24

  检验:把x=24代入原方程。

  左边=24-8=16,右边=16,左边=右边

  所以x=24是原方程的解。

  师:以后解方程时,要求检验的,要写出检验过程,没有要求检验的,要进行口头检验,要养成检验的习惯。

  3.课堂练习。

  做教书第107页“做一做”中的题目。

  4.巩固练习。

  做练习二十六的第1~3题。

  课后小结:

《方程的意义》教案3

  教学目标:

  (1)使学生理解方程概念,感受方程思想。

  (2)经历从生活情景到方程模型的建构过程。

  (3)培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  (实物天平比较小,用屏幕上的天平来模拟实验。)

  2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?

  (说明两边的重量可能有三种不同的关系。)

  用式子描述重量之间的相等关系。

  3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

  用式子表示两队比分的关系。

  红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎样呢?

  用式子来表示比分的三种关系。

  4.创设四个情景。

  (1)每个情景中数量之间有什么关系?

  (2)你能用关系式清晰地来描述吗?

  二、引导分类,概括方程概念。

  刚才我们对情景的描述得到了很多式子。

  200+200=400 18 < 23 18+χ<23>23 18+χ=23

  280 > 100 120 < 4χ 25+χ=70 22y+720=1050

  1.学生尝试第一次分类。

  可能有几种不同的分法。

  (1) 看是否是等式。

  (2) 看是否含有未知数。

  ……

  2.学生尝试第二次分类。

  得到四组不同的式子。

  3.描述每一组的特征。

  4.引导概括方程概念。

  含有未知数的等式叫方程。

  三、抓等量关系,体会方程本质。

  1.演示动态平衡。有等量关系,能用方程表示

  2.出示情景(没有等量关系,不能用方程表示。)

  出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

  3.通过今天这节课,你学到了什么呢?

  四、联系实际,应用与拓展。

  1.周老师从无锡到徐州来上课。

  (1)线段图。

  (2)我乘火车从无锡站开出,每小时行χ千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

  (3)到了徐州站,我买了3枝圆珠笔,每枝χ元,付出20元,找回2元。

  2.情景图。

  本届奥运会上,中国台北队获得了χ枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”

  3.开放题。

  小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多? (用方程表示)

  “方程的意义”教学设计的说明

  在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

  整体的把握:

  数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

  形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。

  发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

  直观具体层面——举出正例或反例。

  直觉层面——一种数学的`意识、一种方程的感觉。

  这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)

  目标的把握:

  经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

  渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

  过程的把握:

  统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

  本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。

  经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

  参考文献:

  (1)史宁中、孔凡哲着. 方程思想及其课程教学设计——数学教育热点问题系列访谈录之一. 《课程.教材.教法》第24卷第9期,(2)林永伟、叶立军 编着.《数学史与数学教育》第65页. 方程产生历史的启示意义。

  (3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

《方程的意义》教案4

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学重点与难点:通过学习,使学生理解方程的含义。

  教学流程:

  一、教学例1

  出示例1,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的'。

  二、教学例2

  学生自学

  1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100X+50=100

  X+50<100X+X=100

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:X+50>100X+50=100

  X+50<100X+X=100

  第二种:X+50>100X+X=100

  X+50<100X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

《方程的意义》教案5

  教学内容:

  教科书第1-2页例1、例2。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学准备:

  天平、砝码。

  教学重点及难点:

  理解方程的意义,方程与等式的关系。

  教学过程:

 一、借助天平体会等式的含义。

  (1)你会用等式表示天平两边物体的质量关系吗?(50+50=100 50×2=100)

  (2)你还能写出这样的等式吗?根据学生举例写下2~3个。

  (3)你感觉什么样的式子是等式呢?

  用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的;

  二、感知不等式,教学方程的意义。

  1、出示实物天平:

  (1)左边放克,右边放克,可以用什么式子来表示?

  板书:

  (2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)

  (3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?

  交流并板书+x< +x= +x>

  (4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。

  2、例二的内容

  (1)学生在作业纸上完成例二的内容。集体交流汇报。板书

  x+5>100 x+50=150 x+50<200 2×x=200

  (2)概括概念

  A、观察黑板上的算式,你能把他们分分类吗?

  B、你分类的依据是什么?

  第一次分类:按照等式、不等式分

  (老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)

  还能再分下去吗?

  第二次分类:按既含有字母且是等式分

  (此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)

  C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)

  像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。

  D、完成试一试

  三、突出方程概念的内涵与外延

  1、讨论判断

  (1):哪些是等式,哪些是方程?

  6+x=14 36-7=2960+23>708+x y-28=35

  x+4〈14 m+n=100

  (2)在判断之后,你对等式和方程有什么新的认识呢?

  可能有:未知数可以用x、y等多个字母表示;

  一个等式中可以含有多个未知数;

  等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的`比较辨析。)

  (3)讨论比较,辨析概念。

  讨论下面的说法正确吗?

  所有的方程都是等式。

  所有的等式都是方程。

  (4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?

  (5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)

  (6)引导质疑你还有什么疑问?

  四、用方程表示直观情境里的相等关系

  (1)看图列方程

  (2)用方程表示下面的数量关系。

  (3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?

  (说明:并不是任何时候都要列方程的。)

  五、总结提升,介绍方程的数学史

  板书设计:方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

  教学后记:

《方程的意义》教案6

  课堂教学内容:教科书第1~2页的内容及练习一的1~3题。

  课堂教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  重点:理解等式的性质,理解方程的意义。

  难点:理解方程的意义,弄清方程与等式的关系。

  课前准备:光盘

  教学过程:

  一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式” 说明:未知数可以用X表示,也可以用别的符号表示。

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程

  小结:方程是一种特殊的等式。

  如果用图来表示可以这样表示(用集合图表示)

  二、 巩固方程的意义

  1、练一练第1题

  (1)观察,找一找哪些是等式,哪些是方程?

  (2)交流:这样找的理由是什么?

  (3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

  2、试一试

  (1)观察左边的天平图,说说图中的是数量关系,列出方程。

  (2)观察右边的图,弄清题意,列出方程。

  3、练一练第3题

  先列出方程,再比较哪个方程比较简单。

  4、练一练第2题

  先写一些方程再组织交流

  三、课堂总结

  四、巩固练习

  1、练习一第1题 先独立完成再交流

  2、练习一第2题

  (1)先说一说每题的数量关系

  (2)独立列出方程

  (3)交流

  3、练习一第3题

  (1)说一说天平两边有什么物体,这些物体的质量间有什么关系

  (2)独立思考列出方程

  (3)观察方程,初步感知等式的性质。

  设计意图:

  创设情境,自主体验

  本课通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

  (二) 突出重点,自主探索

  理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过算式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的.思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

  (三) 使用交流,注重评价

  要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。感受数学与生活之间的密切联系。

《方程的意义》教案7

  教学目标:

  1、知识与技能:让学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

  2、过程与方法:会判断什么是方程,会解一步计算的方程,并会检验方程的解。

  3、情感态度与价值观:让学生养成良好的检查、验算的习惯,培养学生的分析能力、观察能力。

  教学重点:

  理解方程的意义,初步掌握解方程的方法和书写格式。

  教学难点:

  方程的解和解方程两个概念间的联系及区别,并会应用。

  教具准备:

  课件、白纸

  教学过程:

  一、激情导入

  1、游戏引出课题:

  师:小朋友们,我们来做个游戏吧!老师来说一个词语,你们反这个词语反一反说出来,好吗?看谁反应快!

  父母的爱——爱父母;动物的画——画动物;

  节目的表演——表演节目;生命的感悟——感悟生命;朋友的理解——理解朋友;

  朋友的善待——善待朋友;亲人的召换——召换亲人;儿女的担忧——担忧儿女

  问题的.答——答问题;方程的解——解方程;

  引出课题:板书“方程的解解方程”

  这节课我们来研究这里面的知识。

  二、讲解概念“等式、方程”

  1、找朋友:

  师:刚才我们玩的这个游戏中,找到了好几对文字上的朋友。

  下面,请你来帮这些式子或数字找找朋友,你愿意吗?

  生:愿意。

  ①、出示课件:同桌之间说一说;指名回答,根据学生回答再次出示课件。

  师:这几对好朋友都有什么特点呢?

  生:它们相等。(关键引出“相等”)

  师:除了把它们用线连起来,还可以用什么方法来表示它们之间是相等的呢?

  生:列成一个式子。

  学生口答列式,师边板书:80-20=60

  2+0.5=2.5

  30÷15=2

  30×2=60

  师:像这样用等号连接起来的,表示左右两边相等的式子,我们把它们取名叫等式。

  师:你能举例说几个等式吗?

  ②、引出方程:

  师:那剩下的几个它们找不到朋友,心里不太高兴,你能把它们也连连线写成一个等式吗?

  生:能。

  学生口答并板书,如:x+3=9

  300-b=250

  3a=18

  师:我们又找到了3对朋友,它们也是等式。那这三个等式跟刚才的四个等式有哪些相同和不同的地方吗?

  生:它们有未知数x、a、b。

  师:像这样含有未知数的等式,我们给它取名叫方程。

  你能举例说几个方程吗?

  2、等式与方程的关系:

  师:那等式和方程之间到底是什么关系呢?

  你能用一种直观形象的方法来表示它们之间的关系吗?

  你可以在纸上写一写、画一画,用自己喜欢的方式来表示,四人小组讨论一下。

  指名回答。出示课件并板书。

  师小结:方程属于等式,里面含有未知数,是一种特殊的等式,但等式不一定是方程。

  3、判断练习:

  师:我们有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎么想?

  生:先看它是不是等式,如果是等式,再看它有没有未知数。如果它有未知数,就是方程;如果没有未知数,就不是方程,而是一般的等式。

  师小结:一必须是等式,二必须含有未知数。

  师出示课件中的练习:下列哪些是方程,哪些不是方程?

  ①、下面哪些是方程,哪些不是方程:

  35-b=1284÷12=7

  5x-32<749÷y=7

  450x=90069+a

  ②、含有未知数的算式叫做方程。

  ③、方程一定是等式;等式一定是方程。

  ④、35+x=76既是等式,也是方程。

  ⑤、30+20=10+40是等式,但不是方程。

  ⑥、y=0不是方程。

  ⑦、x=20是方程30+x=50的解。

《方程的意义》教案8

  教学要求:

  使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

  教学重点:

  掌握解方程的依据、步骤和书写格式。

  教学难点:

  方程的解和解方程两个概念间的联系及区别。

  教学用具:

  简易天平、砝码、标有“20”、“30‘和”?“的方木块。

  画有P97页上图的挂图、小黑板或投影片若干张。

  教学过程:

 一、激发

  根据加法与减法、乘法与除法的关系,说出求下面各数的方法。

  1、一个加数=()

  2、被减数=()

  3、减数=()

  4、一个因数=()

  5、被除数=()

  6、除数=()

  二、尝试

  1、方程的意义

  (1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。

  (2)师演示如何用天平称物品。(称出的物品同P。105页上图。)

  (3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)

  (4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。

  (5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。

  问:20+30=50是一个什么式子?(等式。)

  (6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。)

  (7)师改变天平上所放的物品和砝码,使之与P。105页的下图相同。引导学生观察、思考并回答下列问题:

  ①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)

  ②怎样用式子来表示这种平衡的情况呢?再试试看!

  板书;20十?=100。

  ③”?“是不是要求的未知数?我们以前学习过,一般用什么

  字母表示未知数?(师生共同把等式”20+?=100改写成“20+x

  =100)

  ④20+x=100是一个什么式子?(也是一个等式。)

  ⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)

  ⑥左盘中这个标有”?“的方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的重量吗?

  生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。

  ⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)

  师在20+x=100的右边板书:x=80。

  (8)师出示P。106页上图。引导学生观察,启发学生思考下列问题:

  ①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)

  ②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)

  ③谁能根据图意写出一个等式来?(3x=234。)

  ④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)

  ⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)

  师在3x=234的右边板书:x=78。

  (9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x÷6=7叫做方程。

  师再板书几个一般的等式,形成如下的板书:

  方程一般等式

  20+x=10020+80=100

  3x=2343×78=234

  x-8=513-8=5

  x÷6=742÷6=7

  师引导学生观察上面的等式,思考并回答下面的问题。

  ①方程是不是一种等式?(是等式。)

  ②方程与一般的等式相同吗?你发现方程有什么特点?

  ③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。

  方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。

  根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的'范围比方程的范围大;一切方程都是等式,但等式不一定是方程。

  (10)练一练:做一做。

  2、解简易方程(一)。

  (1)理解方程的解和解方程的含义。

  ①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。

  ②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)

  (2)出示例1:解方程x-8=16。

  ①x在这道减法算式中相当于什么数?(被减数)

  ②根据四则运算各部分之间的关系,被减数应该怎么求?

  ③解方程的步骤和书写格式是怎样的?

  师讲解:首先要写”解“字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的”根据“可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。

  接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。

  (3)练一练:做一做。

  三、应用

  练习二十四第1、2题。

  教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。

  四、体验

  这节课我们学习了什么?

  (方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写”解“字,上、下行的等号要对齐,注意不能连等。)

  五、作业

  练习二十四第3、4、5题。

《方程的意义》教案9

  第5单元 简易方程

  第7课时 方程的意义

  【学习目标】

  1.知识与技能:使学生初步理解“等式”、“不等式”和“方程”的意义,并能进行辨析。

  2.过程与方法:利用天平的原理,理解不等式和方程。

  3.情感、态度与价值观:渗透认识来源于实践的辨证唯物主义思想。

  【学习重、难点】

  重 点:会用方程的意义去判断一个式子是否是方程。

  难 点:会按要求用方程表示出数量关系。

  【学习准备】天平、空水杯、水(可根据实际变换为其它实物)

  【学习过程】

  一、创设情景,引入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在托盘两端的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、自主探究

  学生自学并完成相关练习。

  三、例题精讲

  1、实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克。

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  四、练习设计

  1、写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它们不是方程的原因。

  看书第63页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有未知数(即字母),这也是判断一个式子是不是方程的依据。

  2、反馈练习,教材P63做一做第1题。

  完成做一做,在是方程的式子后面打上“√”。对于不是方程的'几个式子要说明其理由。

  3、完成P66练习十四第2题,先让学生说出图意,再根据图意再列出相应的方程。

  4、独立完成P66练习十四第3题,评讲时,介绍什么叫数量关系,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,所以方程形式也可能不同。

  五、作业:P66练习十四第1题。

《方程的意义》教案10

  教学目标:

  知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

  过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

  情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

  教学方法:合作探索,小组交流、观察、分析、概括等方法

  教学过程:

  (一)创设情境,激发兴趣。

  师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

  (二)观察现象,抽象概括

  1.平衡现象数量关系的抽象概括。

  师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

  师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

  师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

  2.不平衡到平衡现象数量关系的抽象概括

  师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

  师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

  这边加150克砝码,观察天平平衡了吗?

  师:左边盘中物体质量的可以怎样表示?(生:X+150)

  师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

  师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

  师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

  3.不确定现象数量关系的抽象概括

  师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

  师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)

  师:这瓶矿泉水被喝掉了多少克?(生:不知道)

  师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)

  师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]

  师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

  (三)观察分类,抽象概念

  1.观察分类。

  师:大屏幕上出现的'这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)

  2.展示分类。

  ①交流分类情况,说明分类理由。

  ②揭示“等式”与“不等式”的概念

  师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

  3.抽象概念

  师:请同学们仔细观察这些等式,它们有什么不同?

  师:这些等式中的字母表示“未知数”,像这些“X+100=

  含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

  师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)

  (四)应用新知,加深理解

  1.判断下列式子是不是方程。

  2.创作方程。

  3.问题质疑,揭示方程与等式的关系。

  ①含有未知数的式子是方程?

  ②“方程一定是等式,等也一定是方程?

  (五),巩固练习。

  师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

  师:我们一起来应用今天所学的知识吧!

《方程的意义》教案11

  教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  教学重点:

  理解并掌握方程的意义。

  教学难点:

  会列方程表示数量关系。

  教学过程:

  一、教学例1

  1.出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  2.引导

  (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?

  二、教学例2

  1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

  2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  三、完成练一练

  1.下面的式子哪些是等式?哪些是方程?

  2.将每个算式中用图形表示的未知数改写成字母。

  四、巩固练习

  1.完成练习一第1题

  先仔细观察题中的'式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

  2.完成练习一第2题

  五、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  六、作业

  完成补充习题

  板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

《方程的意义》教案12

  【教材分析】方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察.比较.分析对其进行分类,最后归纳.概括出方程的意义,培养了学生分析.比较.归纳.概括.创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础

  【教学目标】

  1.理解和掌握等式与方程的意义,明确方程与等式的关系。

  2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。

  3.感受方程与生活的密切联系,发展抽象思维能力和符号感。

  【教学重点】理解和掌握方程的意义。

  【教学难点】弄清方程和等式的异同。

  【数学思想】符号化思想,转化的思想,数形结合的思想。

  一.创设情境,引出问题

  教师活动

  学生活动及达成目标

  1.同学们,谁还记得《曹冲称象》的故事?

  2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

  3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

  简单介绍《曹冲称象的故事》

  能说出让大象和石头的重量相等,再称石头的重量。

  达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。

  二.共同探索,总结方法

  教师活动

  学生活动及达成目标

  1.出示天平:让学生说一说对天平有哪些了解?

  如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

  2.合作探究。

  (1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?

  用算式怎样表示呢?

  让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

  (2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

  教师质疑:如果我往杯子里倒些水,观察天平现在的情况。

  师:一杯水的重量是多少,怎样表示?你有办法吗?

  追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

  (3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?

  (4)教师在右边依次加一个100g的砝码,加两个100g的`砝码让学生观察,并说一说天平的情况,用数学算式怎样来表示吗?

  教师让学生继续操作,怎样才能使天平平衡呢?

  这说明了什么?

  (一杯水的重量等于250g)

  (5)你们能用数学算式来表示这天平的状况吗?

  (师板书)

  引导学生观察比较这三个算式有什么不同?

  100+x >200

  100+x<300

  100+x =250

  师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)

  (6)让学生比较50+50=100与100+x=250两个等式,有什么不同?

  教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)

  (7)引导学生思考归纳小结:

  是不是所有的等式都是方程?

  是不是所有的方程都是等式?

  那么,方程有哪些特点?

  (8)让学生仿照课本情境图,自己试着写一些方程。

  自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。

  让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。

  用算式表示:50+50=100。

  学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。

  学生看出在空杯里加一杯水后天平不平衡了。

  思考得出:一杯水的重量=水的重量十杯子的重量。

  学生汇报:100+x

  学生回答:天平两边不平衡,用数学算式来表示100+x >100

  学生观察后分组讨论:

  汇报时用式子表示:

  100+x >200

  100+x<300。

  这时学生很容易发现这杯水的重量大于200g,小于300g。

  引导学生把右边的砝码换成250 g,使天平左右两边平衡。

  学生自主思考,再全班交流汇报:100+x =250

  生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。

  达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。

  学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

  不是

  是

  达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

  三.运用方法,解决问题

  教师活动

  学生活动及达成目标

  完成教材第63页“做一做”第1题。

  完成教材第63页“做一做”第2题。

  让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

  先说一说图意,再写方程表示数量关系。

  达成目标:通过学生自主分类比较,

  调动了学生的主动性和能动性,

  让学生自己发现知识的形成过程,

  层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。

  四.反馈巩固,分层练习

  教师活动

  学生活动及达成目标

  基础练习:66页练习十四第1.2.3题。

  拓展练习:见

  达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。

  五.课堂总结,提升认识

  教师活动

  学生活动及达成目标

  这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?

  达成目标:方程的特点:是一个等式,且含有未知数。

  1.像100+x =250这样含有未知数的等式叫做方程。

  2.方程有两个重要条件:一个是等式,一个是含有未知数。

  3.方程一定是等式,等式不一定全都是方程。

《方程的意义》教案13

  教学目标:

  1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

  2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

  教学重点:理解等式的性质,理解方程的意义。

  教学难点:利用等式性质和方程的'意义列出方程。

  教学准备:多媒体课件

  教学过程:

  一、情景引入

  1、出示天平。

  知道这是什么吗?你知道它是按照什么原理制造的吗?

  说说你的想法。

  如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

  二、教学新课

  1、教学例1。

  (1)出示例1图。

  你会用等式表示天平两边物体的质量关系吗?把它写出来。

  50+50=100 (板书)

  说说你是怎样想的?

  (2)指出等式的左边,等式的右边等概念。

  等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

  能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

  2、教学例2。

  (1)出示例2图。

  天平往哪一边下垂说明什么?(哪一边物体的质量多)

  你能用式子表示天平两边物体的质量关系吗?

  学生独立完成填写,集体汇报。

  板书:x+50>100 x+50=150

  X+50<200 x+x=200

  如果让你把这四个式子分类,应分为几类?为什么?

  指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

  知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

  说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

  (2)讨论:等式与方程有什么关系?

  小组讨论。

  指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  3、教学“试一试”。

  独立完成,完成后汇报方法。

  让学生说一说,每题中的方程哪个更简洁一些?

  指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

  4、完成“练一练。

  (1)完成第1题。

  独立完成判断后说说想法。

  (2)完成第2题。

  (3)完成第3题。

  交流所列方程,说说你为什么这样列?你是怎么想的?

  三、巩固练习

  1、完成练习一第1题。

  能说说每个线段表示的意思吗?方程怎样列呢?

  小组中交流列式。

  2、完成练习一第2题。

  理解题意,说说数量关系是怎样的?

  列出方程并交流。

  3、完成练习一第3题。

  四、课堂总结

  通过学习,你有哪些收获?

  板书设计:

  方程

  等式 50+50=100 x+50>100 x+50=150

  方程 X+50<200 x+x=200

《方程的意义》教案14

  教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

  教学目标:

  1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

  2、培养学生认真的观察、思考分析问题的能力。

  3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

  教学重点:理解和掌握方程的意义

  教学难点:弄清方程和等式的异同。

  教学过程:

 一、 创设情境,生成问题

  (1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

  小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

  (2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的'平衡这一特点。

  师;怎样才能使天平左右两边相等?

  出示一架天平的左边是有物体20克和30克,右边是50克

  师:用算式怎么表示?

  生:20+30=50

  引导总结得出这个一个等式。

  二、探索交流,解决问题再出示天平左边是20克的物体和?克的物体,右边是100克的物体,教案《方程的意义教学设计》。

  师:“?”表示什么?我们可以用什么表示?

  生:用字母表示。

  生1:20+x=100

  生2:100-x=20

  生3:100-20=x

  师:你认为用哪个式子更能表示天平的作用两边是平衡的?

  引导得出:20+x=100 表示天平左右两边是平衡的.

  出示6架天平,根据天平的平衡状态写算式。

  把这8个算式标号,得练习:

  ①20+30=50 ⑤ 80<2χ

  ②20+χ=100 ⑥ 3χ=180

  ③50×2=100 ⑦100+20<100+50

  ④50+2χ> 180 ⑧100+2χ=3×50

  思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

  同桌合作交流汇报

  等式 不等式

  ①20+30=50 ④50+2χ> 180

  ②20+χ=100 ⑤ 80<2χ

  ③50×2=100 ⑦100+20<100+50

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  含有未知数的式子 不含未知数的式子

  ②20+χ=100 ①20+30=50

  ④50+2χ> 180 ③50×2=100

  ⑤ 80<2χ ⑦100+20<100+50

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  师:既是等式,又含有未知数的的式子有哪几个?

  生:②20+χ=100

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

  三、巩固应用,内化提高

  练习:下面哪些是方程?哪些不是方程?

  ① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

  ② Y+24 ( ) ⑦ 35+65=100 ( )

  ③ 5 χ+32=47 ( ) ⑧χ-14> 72 ( )

  ④ 28< 16+14( ) ⑨9b-3=60 ( )

  ⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

  张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

  (1) 6X + ( =78

  (2) 36 + ( ) =42

  四、回顾整理,反思提升 通过这一节课的学习,你有哪些收获?

《方程的意义》教案15

  一、教学内容:

  人教版五年级上册第62~63页“方程的意义”。

  二、教学目标:

  1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

  2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

  3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

  三、教学重、难点:

  1.教学重点:理解并掌握方程的意义。

  2.教学难点:建立“方程”的概念,并会应用。

  四、教学过程:

  (一)情境引入

  今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

  (二)探究新知

  1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

  请同学们仔细观察,在这副图里你获得了哪些信息?

  师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

  2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

  3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

  师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

  师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的.重量要重。得到数学式子:100+x>100

  4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

  师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

  师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

  5.观察比较:

  50+50=100

  100+x>100

  100+x>200

  100+x<300

  100+x=250

  总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。

  像100+x=250这样,含有未知数的等式就是方程。

  揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

  6.提问:这一个等式是方程吗?为什么?

  追问:这两个式子里都含有未知数,它们是方程吗?

  思考:你认为一个方程应该符合哪些条件?

  (强调:方程既要是等式,又要含有未知数。)

  (三)巩固练习

  1.判断下面哪些式子是方程,并同桌说一说理由。

  35+65=100 8-x=2 y+24

  2.4=a×2 x-14>72 15÷b=3

  5x+32=47 28<16+14 6(y+2)=42

  2.下面哪些天平不能用方程表示?(出示6幅天平图)

  用方程表示出剩下天平的数量关系。

  (说一说天平两边的数量关系,列方程)

  3.用方程表示下面的数量关系。(说数量关系,列方程)

  先独立列出方程,再与同桌说一说方程表示的数量关系。

  4.猜方程

  让学生初步感知:方程一定是等式,等式不一定是方程。

  5.写方程,编故事。

  6.方程“史话”。

  (四)课堂小结

  今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?

【《方程的意义》教案】相关文章:

《方程的意义》教案02-18

《方程的意义》教案15篇02-18

方程意义教学反思02-22

方程的意义教学反思10-28

《方程的意义》教学反思03-06

《方程》教案01-27

《方程的意义》教学反思(15篇)04-01

《方程的意义》教学反思15篇03-06

小学五年级数学《方程的意义》教案04-15