有理数加减混合运算教案

时间:2024-09-26 08:57:07 晶敏 教案 我要投稿

有理数加减混合运算教案(精选10篇)

  作为一位杰出的教职工,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么你有了解过教案吗?以下是小编收集整理的有理数加减混合运算教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

有理数加减混合运算教案(精选10篇)

  有理数加减混合运算教案 1

  一、知识回顾

  (1)有理数的加、减法法则;

  (2)特别值得注意的问题(同号、异号、相反数)

  二、新课导入

  计算:-5-(+3)+(-7)-(—15)

  解:原式=(-5)+(-3)+(-7)+(+15)=0

  另解:原式=-5-3-7+15=0

  强调:①省略“+”②省略“()”③更简化

  读法:①读代数和;②直接读+、-

  板书课题:有理数的加减混合运算

  三、例题讲解

  例计算下列各式略

  小结:

  有理数加减混合运算的步骤:

  ⑴写成代数和;

  ⑵观察有无相反数;

  ⑶运用交换、结合律达到同号相加或同分母运算或凑整

  ⑷写出结果

  四、学生练习

  可以在黑板的`下方进行。

  讲解评析、纠错订正。

  数学思考:

  计算:1-2+3-4+5-6+7-8+…+99-100

  五、课堂小结

  师生共同小结本节课的内容。

  六、布置作业

  A、B、c分层次布置。

  有理数加减混合运算教案 2

  教学目标

  1、让学生能进行包括小数或分数的有理数的加减混合运算。

  2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。

  教学重点与难点

  重点:有理数加法和减法的混合运算。

  难点:减法统一成加法再写成代数和的形式。

  教学过程

  一、复习引入

  课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?

  可用两种方法回答这个问题。

  第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。

  第二个方法:利用有理数减法法则得算式:

  12.5―(―0.3)=12.8(米)。

  比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。

  二、新课的'进行

  某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?

  解法一:(-9)+11=2,2+(-6)=-4。

  所以半夜的温度是-4℃。

  解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。

  比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。

  议一议:P57议一议

  通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:

  4.5+(-3.2)+1.1+(-1.4)

  =1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)

  此时飞机比飞点高了1千米。

  注意运算顺序是从左到右的计算过程。

  还可以这样计算:4.5-3.2+1.1-1.4

  =1.3+1.1-1.4=2.4-1.4=1(千米)

  此时飞机比飞点高了1千米。

  比较以上两种算法,你发现了什么?

  (1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。

  (2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。

  例1 计算(P58例1)

  例2 计算:(1) (2)

  解:(1)

  (2)

  三、课堂练习

  1、课本P58随堂练习1、(1),(2),(3)

  2、计算:(1) (2)

  四、课堂小结

  根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。

  五、作业设计

  1、P58 习题2.7 1,3

  有理数加减混合运算教案 3

  学习目标:

  1、会进行包括小数或分数的有理数的加减混合运算。

  2、熟练地进行有理数加减混合运算,并利用运算律简化运算。

  3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。

  学习重难点:

  1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。

  2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。

  学习过程:

  任务一:温故知新

  1、完成课本44页习题2、7的第1、2题,写在作业本上。

  2、6有理数的加减混合运算》课时练习

  一、选择题(共10题)

  1、下列关于有理数的加法说法错误的是( )

  A、同号两数相加,取相同的符号,并把绝对值相加

  B、异号两数相加,绝对值相等时和为0

  C、互为相反数的两数相加得0

  D、绝对值不等时,取绝对值较小的数的符号作为和的符号

  答案:D

  解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的符号作为和的符号

  分析:考查有理数的的加法法则

  《2、6有理数的'加减混合运算》同步练习

  2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?

  3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5

  这10名学生的总体重为多少?10名学生的平均体重为多少?

  有理数加减混合运算教案 4

  教学目标

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)知识结构

  (三)教法建议

  1.通过习题,复习、巩固有理数的`加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

  -3-4表示-3、-4两数的代数和,

  -4+3表示-4、+3两数的代数和,

  3+4表示3和+4的代数和

  等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如

  12-5+7应变成12+7-5,而不能变成12-7+5。

  有理数加减混合运算教案 5

  教学目的:

  1、要求学生理解加减混合运算统一为加法运算的意义。

  2、能初步掌握有关有理数的加减混合运算。

  教学分析:

  重点:如何更准确地把加减混合运算统一成加法。

  难点:将一个加减混合运算式写成省略加号的和的形式。

  教学过程:

  一、知识导向:

  本节是在对前面所学的有理数的加法运算法则及减法运算法则的'综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。

  二、新课:

  1、知识基础:

  其一:有理数的加法法则;

  其二:有理数的减法法则。

  其三:“+”、“-”在不同情形的意义(运算符号及性质符号)

  2、知识形成:

  (引例)计算:

  根据减法法则,按照运算顺序,有:

  原式

  在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:

  这个式子仍看作和式,有两种读法,

  按性质符号:读作“负8、正10、负6、负4的和”

  按运算意义:读作“负8加上10减去6减去4”

  例:把写成省略加号的和的形式,并把它读出来(两种读法)。

  例:按运算顺序直接计算:

  三、巩固训练:

  P46.1、2

  四、知识小结:

  本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。

  五、家庭作业:

  P471、23

  六、每日预题:

  如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?

  有理数加减混合运算教案 6

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、理解掌握有理数的减法法则。

  2、会进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的.减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  1、师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  教法说明

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

  教法说明

  由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)教师强调法则:

  (1)减法转化为加法,减数要变成相反数。

  (2)法则适用于任何两有理数相减。

  (3)用字母表示一般形式为:。

  教法说明

  结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

  3、例题讲解:

  [出示投影1 (例题1、2)]

  例1 计算(1)(-3)-(-5); (2)0-7;

  例2 计算(1)7.2-(-4.8);(2)()-。

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:

  (1)转化,

  (2)进行加法运算。

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

  教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

  师:组织学生自己编题,学生回答。

  教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题。

  [出示投影2 (计算题1、2)]

  1、计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5。

  2、计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

  有理数加减混合运算教案 7

  一、素质教育目标

  (一)知识教学点

  1.了解:代数和的概念.

  2.理解:有理数加减法可以互相转化.

  3.应用:会进行加减混合运算.

  (二)能力训练点

  培养学生的口头表达能力及计算的准确能力.

  (三)德育渗透点

  通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

  (四)美育渗透点

  学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

  二、学法引导

  1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.

  2.学生写法:练习→寻找简单的一般性的`方法→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:把加减混合运算算式理解为加法算式.

  2.难点:把省略括号和的形式直接按有理数加法进行计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

  七、教学步骤

  (一)创设情境,复习引入

  师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:

  -9+(+6);(-11)-7.

  师:(1)读出这两个算式.

  (2)“+、-”读作什么?是哪种符号?

  “+、-”又读作什么?是什么符号?

  学生活动:口答教师提出的问题.

  师继续提问:(1)这两个题目运算结果是多少?

  (2)(-11)-7这题你根据什么运算法则计算的?

  学生活动:口答以上两题(教师订正).

  师小结:减法往往通过转化成加法后来运算.

  【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

  有理数加减混合运算教案 8

  一、 教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。

  二、 教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的运算能力。

  三、教学建议

  (一)重点、难点分析

  本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算。

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算。

  (二)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然。

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

  备注:教学过程我主要说第一小节---去括号

  (三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。

  本节课的教学设计环节:

  教学环节 教学活动设计 设计说明

  前提诊测,复习提问1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;2、绝对值检测:随机出五六道小题即可 复习旧知识的`目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.

  提出问题,创设情景 把以下数相加、相减

  1、+4,-5,+3,-6,-7,3,-2.5

  2、-3.2,-2.6,+5,+6,-4 在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)

  尝试指导,实施目标 从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)

  题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)

  2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);

  +(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);

  -(-7)+(-2.3)-(-5.1)+(-3) 此处要反复练习,并使学生明白去括号后的是省略加号的和式。

  鼓励学生积极发言,增进师生、生生之间的交流、互动.

  形成性测试,检测目标 1、做书18、20、23、24页练习题(只去括号)

  2、利用书上习题1.3复习巩固1、2题的双数题进检测 把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

  归纳总结,纳入知识系统+(),去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题

  有理数加减混合运算教案 9

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

  3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的

  3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  秋高气爽、瓜果飘香,在这个收获的季节,我们又迎来了一个充满希望的新学期。因此,编辑老师为各位老师准备了这篇2015初一上册数学第一单元教案,希望可以帮助到您!

  教学目标

  1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

  2.了解倒数概念,会求给定有理数的倒数;

  3.通过将除法运算转化为乘法运算,培养学生的`转化的思想;通过有理数的除法运算,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节教学的重点是熟练进行有理数的除法运算,教学难点是理解有理数的除法法则。

  1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。

  2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。

  在有整除的情况下,应用第二个法则比较方便

  在能整除的情况下,应用第二个法则比较方便。

  教法建议

  1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

  2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

  3.理解倒数的概念

  (1)根据定义乘积为1的两个数互为倒数。

  (2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。

  (3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。

  4.关于倒数的求法要注意:

  (1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可。

  (2)正数的倒数是正数,负数的倒数仍是负数。

  (3)负倒数的定义:乘积是-1的两个数互为负倒数。

  有理数加减混合运算教案 10

  一、学生起点分析

  学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

  学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

  学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

  二、教学任务分析

  对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

  1.经历探索有理数加法法则的过程,理解有理数的加法法则;

  2.能熟练进行整数加法运算;

  3.培养学生的数学交流和归纳猜想的能力;

  4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

  三、教学过程设计

  本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

  (一)复习引入,提出问题

  活动内容:

  1.复习提问:

  (1)下列各组数中,哪一个较大?

  (2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

  活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

  2.提出问题:

  某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

  如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

  (1)计算(-2)+(-3).

  在方框中放进2个 和3个 :

  因此,(-2)+(-3)= -5.

  用类似的方法计算(2)(-3)+ 2

  (3) 3 +(-2)

  (4) 4+(-4)

  思考: 两个有理数相加,还有哪些不同的情形?举例说明。

  引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

  活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

  活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

  (二)活动探究,猜想结论:

  上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

  学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

  对“一起探究”,教师可引导学生按以下步骤思考:

  1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

  2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的`绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

  3、从中归纳概括出规律

  在学生探究的基础上,教师引出规定的加法法则。

  在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

  活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

  (三)验证明确结论:

  例1 计算下列算式的结果,并说明理由:

  (1) 180 +(-10) (2) (-10)+(-1);

  (3)5+(-5); (4) 0+(-2)

  活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值。

  活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

  (四)运用巩固:

  活动内容:

  1. 口答下列算式的结果

  (1) (+4)+(+3); (2) (-4)+(-3);

  (3)(+4)+(-3); (4) (+3)+(-4);

  (5)(+4)+(-4); (6) (-3)+0

  (7) 0+(+2); (8) 0+0。

  活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

  2.请同学们完成书上的随堂练习:

  (1)(-25)+(-7); (2)(-13)+5;

  (3)(-23)+0; (4)45+(-45)

  全班学生书面练习,四位学生板演,教师对学生板演进行讲评。

  活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

  活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种问题

  (五)课堂小结:

  活动内容:师生共同总结。

  1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

  2. 有理数加法法则及其应用。

  3. 注意异号的情况。

  活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

  活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

【有理数加减混合运算教案】相关文章:

有理数的加减混合运算教案04-02

有理数的加减混合运算教案04-28

数学教案-有理数的加减混合运算05-02

加减混合运算05-02

数学小数加减混合运算教案02-11

分数加减混合运算05-02

有理数的混合运算05-02

《有理数的加减混合运算》教学反思(通用7篇)09-20

数学教案-分数加减混合运算05-02